【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(a≠0)的圖象在第二象限交于點A(m,2).與x軸交于點C(﹣1,0).過點AABx軸于點B,ABC的面積是3.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若直線ACy軸交于點D,求BCD的面積.

【答案】(1)反比例函數(shù)的解析式為y=﹣,一次函數(shù)的解析式為y=﹣x﹣;(2)SBCD=1.

【解析】

1)根據(jù)點A坐標,點C坐標,結(jié)合ABC的面積是3,求出m的值,從而確定點A的坐標,利用待定系數(shù)法即可求出反比例函數(shù)解析式,一次函數(shù)解析式;

(2)求出點D坐標,利用三角形面積公式進行求解即可得.

(1)ABx軸于點B,點A(m,2),∴點B(m,0),AB=2,

∵點C(﹣1,0),BC=﹣1﹣m,

SABC=ABBC=﹣1﹣m=3,m=﹣4,∴點A(﹣4,2),

∵點A在反比例函數(shù)y=(a≠0)的圖象上,∴a=﹣4×2=﹣8,

∴反比例函數(shù)的解析式為y=﹣,

A(﹣4,2)、C(﹣1,0)代入y=kx+b,得:

,解得:,∴一次函數(shù)的解析式為y=﹣x﹣;

(2)當x=0時,y=﹣x﹣=﹣,

∴點D(0,﹣),

OD=

SBCD=BCOD=×3×=1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖 ,等腰三角形PEF中,PE=PF,點OEF邊上(異于點E,F),點QPO延長線上一點,若EFQ為等腰三角形,則稱點QPEF同類點”.

1)如圖,BG平分∠MBN,過射線BM上的點AADBN,交射線BG于點D,點OBD上一點,連接AO并延長交射線BN于點C,若∠BAD=100°,∠BCD=70°,求證:點CABD同類點;

2)如圖③,在5×5的正方形網(wǎng)格圖上有一個ABC,點A,B,C均在格點上,在給出的網(wǎng)格圖上有一個格點D,使得點DABC同類點,則這樣的點D共有__________個;

3)凸四邊形ABCD中,∠ABC=110°,DA=AB=BC,對角線ACBD交于點O,且BDCD,若點CABD同類點,請直接寫出滿足條件的∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上兩點對應(yīng)的有理數(shù)分別為12,點從點出發(fā),以每秒1個單位長度的速度沿數(shù)軸負方向運動,點同時從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設(shè)運動時間為秒.

1)求經(jīng)過2秒后,數(shù)軸點、分別表示的數(shù);

2)當時,求的值;

3)在運動過程中是否存在時間使,若存在,請求出此時的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB+AC=20OB,OC分別平分∠ABC和∠ACB,ODBC于點D,且OD=3,則圖中陰影部分的面積等于______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BDABC的角平分線,CDABC的外角∠ACE的外角平分線,CDBD交于點D.

(1)若∠A=50°,則∠D=   

(2)若∠A=80°,則∠D=   

(3)若∠A=130°,則∠D=   

(4)若∠D=36°,則∠A=   

(5)綜上所述,你會得到什么結(jié)論?證明你的結(jié)論的準確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算并觀察下列各式:

(x1)(x1) ;

(x1)( x1) ;

(x1)( x1)

2)從上面的算式及計算結(jié)果,你發(fā)現(xiàn)了什么?請根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫下面的空格.(x1) 1;

3)利用你發(fā)現(xiàn)的規(guī)律計算:

4)利用該規(guī)律計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+4x+c(a≠0)經(jīng)過點A(﹣1,0),點E(4,5),與y軸交于點B,連接AB.

(1)求該拋物線的解析式;

(2)將ABO繞點O旋轉(zhuǎn),點B的對應(yīng)點為點F.

①當點F落在直線AE上時,求點F的坐標和ABF的面積;

②當點F到直線AE的距離為時,過點F作直線AE的平行線與拋物線相交,請直接寫出交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+∠4180°,2﹦∠E,則EFBC,下面是王華同學的推導過程﹐請你幫他在括號內(nèi)填上推導依據(jù)或內(nèi)容.

證明:

∵∠1+∠4180° ),

3﹦∠4 ),

∴∠1 180°

AECG

∴∠E﹦∠CGF ).

∵∠2﹦∠E(已知)

2﹦∠CGF ).

BCEF ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案