【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連接AEDE、DC。

1)求證:△ABE≌△CBD;

2)若∠CAE=30°,求∠BCD的度數(shù)。

【答案】1)見解析;(215°.

【解析】

1)由∠ABC為直角,得到∠CBD也為直角,得到一對角相等,再由AB=CB,BE=BD,利用SAS即可得到三角形ABE與三角形CBD全等,得證;
2)由AB=BC,且∠ABC為直角,得到三角形ABC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到∠BAC45°,由∠CAB-CAE求出∠BAE的度數(shù),根據(jù)全等三角形的對應(yīng)角相等得到∠BAE=BCD,即可求出∠BCD的度數(shù).

1)證明:∵∠ABC=90°,DAB延長線上一點,
∴∠ABE=CBD=90°,
ABECBD中,
,
∴△ABE≌△CBDSAS);
2)解:∵AB=CB,∠ABC=90°,
∴△ABC為等腰直角三角形,
∴∠CAB=45°,
又∵∠CAE=30°,
∴∠BAE=CAB-CAE=15°
∵△ABE≌△CBD
∴∠BCD=BAE=15°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊ABC中,點P由點A出發(fā)沿CA方向運動,同時點Q以相同的速度從點B出發(fā)沿BC方向運動,當(dāng)點Q到達(dá)C點時,P,Q兩點都停止運動,連接PQ,交AB于點M

1)如圖①,當(dāng)PQBC時,求證:APAM

2)如圖②,試說明:在點P和點Q運動的過程中,PMQM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C處,折痕為EF,若∠EFC120°,那么∠ABE的度數(shù)為__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1為等腰直角三角形,FAC邊上的一個動點(點FA、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD

1)猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論,_____________

2)將圖1中的正方形CDEF,繞著點C按順時針方向旋轉(zhuǎn)任意角度,得到如圖2的情形,BFAC于點H,交AD于點O,請你判斷(1)中得到的結(jié)論是否仍然成立,證明你的判斷.

3)將圖1中的正方形CDEF,繞著點按逆時針方向旋轉(zhuǎn),得到如圖3的情形,點恰好落在斜邊上,若,求正方形CDEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,于點E,與CD相交于點F,于點H,交BE于點G.下列結(jié)論:①BD=CD;AD+CF=BD;;AE=CF.其中正確的是____________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖①,在ABDCAE中,BD=AE,DBA=EACAB=AC,易證:ABD≌△CAE.(不需要證明)

特例探究:如圖②,在等邊ABC中,點D、E分別在邊BCAB上,且BD=AEADCE交于點F.求證:ABD≌△CAE

歸納證明:如圖③,在等邊ABC中,點D、E分別在邊CB、BA的延長線上,且BD=AEABDCAE是否全等?如果全等,請證明;如果不全等,請說明理由.

拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點OAB邊的垂直平分線與AC的交點,點D、E分別在OBBA的延長線上.若BD=AE,BAC=50°,AEC=32°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法一定正確的是( )

A.所有的等邊三角形都是全等三角形

B.全等三角形是指形狀相同的兩個三角形

C.全等三角形是指面積相等的兩個三角形

D.全等三角形的周長和面積分別相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠B30°,點D、E分別為ABAC上的點,且DEBC.將△ADE繞點A逆時針旋轉(zhuǎn)至點B、A、E在同一條直線上,連接BD、EC.下列結(jié)論:①△ADE的旋轉(zhuǎn)角為120°;②BDEC;③BEAD+AC;④DEAC,其中正確的有( )

A.②③B.②③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點E為線段OB上一點(不與O,B重合),作ECOB,交⊙O于點C,作直徑CD,過點C的切線交DB的延長線于點P,作AFPC于點F,連接CB.

(1)求證:AC平分∠FAB;

(2)求證:BC2=CECP;

(3)當(dāng)AB=4=時,求劣弧的長度.

查看答案和解析>>

同步練習(xí)冊答案