【題目】隨州市新水一橋(如圖1)設(shè)計靈感來源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計長度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.
(1)求最短的斜拉索DE的長;
(2)求最長的斜拉索AC的長.
【答案】(1)最短的斜拉索DE的長為3m;(2)最長的斜拉索AC的長為30m.
【解析】(1)根據(jù)等腰直角三角形的性質(zhì)計算DE的長;
(2)作AH⊥BC于H,如圖2,由于BD=DE=3,則AB=3BD=15,在Rt△ABH中,根據(jù)等腰直角三角形的性質(zhì)可計算出BH=AH=15,然后在Rt△ACH中利用含30度的直角三角形三邊的關(guān)系即可得到AC的長.
(1)∵∠ABC=∠DEB=45°,
∴△BDE為等腰直角三角形,
∴DE=BE=×6=3,
答:最短的斜拉索DE的長為3m;
(2)作AH⊥BC于H,如圖2,
∵BD=DE=3,
∴AB=3BD=5×3=15,
在Rt△ABH中,∵∠B=45°,
∴BH=AH=AB=×15=15,
在Rt△ACH中,∵∠C=30°,
∴AC=2AH=30.
答:最長的斜拉索AC的長為30m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于每個正整數(shù),設(shè)表示的末位數(shù)字.例如:(的末位數(shù)字),(的末位數(shù)字),(的末位數(shù)字),…則的值為( )
A.4040B.4038C.0D.4042
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)O,過點(diǎn)O作DE//BC,分別交AB,AC于點(diǎn)D,E,若AB=4,AC=3,則△ADE的周長是_______________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.給出以下判斷:
①AC垂直平分BD;
②四邊形ABCD的面積S=ACBD;
③順次連接四邊形ABCD的四邊中點(diǎn)得到的四邊形可能是正方形;
④當(dāng)A,B,C,D四點(diǎn)在同一個圓上時,該圓的半徑為;
⑤將△ABD沿直線BD對折,點(diǎn)A落在點(diǎn)E處,連接BE并延長交CD于點(diǎn)F,當(dāng)BF⊥CD時,點(diǎn)F到直線AB的距離為.
其中正確的是_____.(寫出所有正確判斷的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級,75≤x<85為B級,60≤x<75為C級,x<60為D級.現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a=________%;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中C級對應(yīng)的圓心角為________度;
(4)若該校共有2 000名學(xué)生,請你估計該校D級學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀(jì)念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀(jì)念品的出廠價為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
天數(shù)(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 7.5 | 8.5 | 10 | 12 |
任務(wù)完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,
設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.
(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:
(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?
(3)任務(wù)完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當(dāng)天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:對于關(guān)于x的一次函數(shù)y=kx+b(k≠0),我們稱函數(shù)y=為一次函數(shù)y=kx+b(k≠0)的m變函數(shù)(其中m為常數(shù)).
例如:對于關(guān)于x的一次函數(shù)y=x+4的3變函數(shù)為y=
(1)關(guān)于x的一次函數(shù)y=-x+1的2變函數(shù)為,則當(dāng)x=4時,= ;
(2)關(guān)于x的一次函數(shù)y=x+2的1變函數(shù)為,關(guān)于x的一次函數(shù)y=-x-2的-1變函數(shù)為,求函數(shù)和函數(shù)的交點(diǎn)坐標(biāo);
(3)關(guān)于x的一次函數(shù)y=2x+2的1變函數(shù)為,關(guān)于x的一次函數(shù)y=x-1,的m變函數(shù)為.
①當(dāng)-3≤x≤3時,函數(shù)的取值范圍是 (直接寫出答案):
②若函數(shù)和函數(shù)有且僅有兩個交點(diǎn),則m的取值范圍是 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC,BD交于點(diǎn)0,過點(diǎn)0的直線分別交邊AD,BC于點(diǎn)E,F(xiàn),EF=6.則AE2+BF2的值為( )
A. 9 B. 16 C. 18 D. 36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知與互為余角,且平分平分.
(1)求的度數(shù);
(2)如果已知,其他條件不變,則_______度;如果已知,其他條件不變,則_______度;
(3)從以上求的過程中,你得出的結(jié)論是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com