如圖所示,在平面直角坐標(biāo)系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點(diǎn)F.

(1)若拋物線過點(diǎn)A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點(diǎn)M是第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),點(diǎn)M在何處時(shí)△AMC的面積最大?最大面積是多少?求出此時(shí)點(diǎn)的坐標(biāo).
(1)過點(diǎn)A,B,C的拋物線的解析式;
(2)S四邊形ODFE= ;
(3)當(dāng)時(shí),,△AMC的面積有最大值,此時(shí)點(diǎn)M的坐標(biāo)為().

試題分析:(1)由題意易得點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo),利用待定系數(shù)法求解即可;
(2)先求出點(diǎn)D及點(diǎn)E的坐標(biāo),繼而得出直線AE與直線CD的解析式,聯(lián)立求出點(diǎn)F坐標(biāo),根據(jù)S四邊形ODFE=SAOE﹣SADF,可得出答案.
(3)連接OM,設(shè)M點(diǎn)的坐標(biāo)為(m,n),繼而表示出△AMC的面積,利用配方法確定最值,并得出點(diǎn)M的坐標(biāo).
試題解析:(1)∵OB=1,OC="3" ,
∴C(0,-3),B(1,0),
∵△OBC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到△OAE,
∴A(-3,0),
所以拋物線過點(diǎn)A(-3,0),C(0,-3),B(1,0),
設(shè)拋物線的解析式為,可得
解得,
∴過點(diǎn)A,B,C的拋物線的解析式;
(2) ∵△OBC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到△OAE,△OBC沿y軸翻折得到△COD,
∴E(0,-1),D(-1,0),
可求出直線AE的解析式為,直線DC的解析式為,
∵點(diǎn)F為AE、DC交點(diǎn),
∴F(,),
∴S四邊形ODFE=SAOE-SADF=;
(3)連接OM,設(shè)M點(diǎn)的坐標(biāo)為,

∵點(diǎn)M在拋物線上,∴,

=

,
∴當(dāng)時(shí),,△AMC的面積有最大值,
所以當(dāng)點(diǎn)M的坐標(biāo)為()時(shí),△AMC的面積有最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)銷售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500元.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4部.
(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤(rùn)達(dá)到多少元?
(2)若設(shè)每部手機(jī)降低x元,每天的銷售利潤(rùn)為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為多少元?此時(shí)的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)的對(duì)稱軸為,則        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過平移得到拋物線,其對(duì)稱軸與兩段拋物線所圍成的陰影部分的面積是(      )
A.2B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)

(1)證明:不論取何值,該函數(shù)圖象與軸總有兩個(gè)公共點(diǎn);
(2)若該函數(shù)的圖象與軸交于點(diǎn)(0,5),求出頂點(diǎn)坐標(biāo),并畫出該函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向左平移1個(gè)單位,再向下平移3個(gè)單位,得到的拋物線是(      )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過y軸上的一個(gè)定點(diǎn);
⑵若該函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當(dāng)x>2時(shí),M=y2;②當(dāng)x<0時(shí),x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.其中正確的有   (   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=2(x-3)2+1的頂點(diǎn)坐標(biāo)為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案