【題目】老師設(shè)計(jì)了一個(gè)數(shù)學(xué)實(shí)驗(yàn),給甲、乙、丙三名同學(xué)各一張寫有已化為最簡(jiǎn)(沒有同類項(xiàng))的代數(shù)式的卡片,規(guī)則是兩位同學(xué)的代數(shù)式相減等于第三位同學(xué)的代數(shù)式,則實(shí)驗(yàn)成功,甲、乙、丙的卡片如下,丙的卡片有一部分看不清楚了.

(1)計(jì)算出甲減乙的結(jié)果,并判斷甲減乙能否使實(shí)驗(yàn)成功;

(2)嘉琪發(fā)現(xiàn)丙減甲可以使實(shí)驗(yàn)成功,請(qǐng)求出丙的代數(shù)式.

【答案】1)甲減乙不能是實(shí)驗(yàn)成功;(23x25x+2

【解析】

1)根據(jù)題意列出關(guān)系式,去括號(hào)合并后即可作出判斷;
2)根據(jù)題意列出關(guān)系式,去括號(hào)合并即可確定出丙.

解:(1)根據(jù)題意得:

由于丙卡片的常數(shù)項(xiàng)為2,結(jié)果與題意不符,因此甲減乙,實(shí)驗(yàn)不成功;

2)根據(jù)題意得:丙表示的代數(shù)式為甲加乙.

即:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b20;4a+c2b;3b+2c0;mam+b+bam≠﹣1),其中正確結(jié)論的個(gè)數(shù)是(。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙中,每個(gè)小正方形的邊長(zhǎng)為1,每個(gè)小正方形的頂點(diǎn)都叫做格點(diǎn).(請(qǐng)利用網(wǎng)格作圖,畫出的線請(qǐng)用鉛筆描粗描黑)

1)過點(diǎn)CAB的垂線,并標(biāo)出垂線所過格點(diǎn)E;

2)過點(diǎn)CAB的平行線CF,并標(biāo)出平行線所過格點(diǎn)F;

3)直線CE與直線CF的位置關(guān)系是   ;

4)連接ACBC,則三角形ABC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)分解因式:xy22xy+x

2)若代數(shù)式﹣3x1,1在數(shù)軸上位置為從左往右依次排列,求x的取值范圍.

3)化簡(jiǎn):

4)先化簡(jiǎn),再求值,其中x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,E為垂足,連結(jié)DF,則∠CDF等于(  )

A. 80° B. 70° C. 65° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】華聯(lián)超市購進(jìn)一批四階魔方,按進(jìn)價(jià)提高40%后標(biāo)價(jià),為了讓利于民,增加銷量,超市決定打八折出售,這時(shí)每個(gè)魔方的售價(jià)為28.

(1)求魔方的進(jìn)價(jià)?

(2)超市賣出一半后,正好趕上雙十一促銷,商店決定將剩下的魔方以每3個(gè)80元的價(jià)格出售,很快銷售一空,這批魔方超市共獲利2800元,求該超市共購進(jìn)魔方多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFABCD對(duì)角線AC上兩點(diǎn),且AECF

1)求證:四邊形BFDE是平行四邊形.

2)如果把條件AECF改為BEDF,試問四邊形BFDE還是平行四邊形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一個(gè)足球垂直地面向上踢,(秒)后該足球的高度(米)適用公式.

1)經(jīng)多少秒時(shí)足球的高度為20米?

2)小明同學(xué)說:足球高度不可能達(dá)到21米!你認(rèn)為他說得對(duì)嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1a、b為有理數(shù),且a+b、ab在數(shù)軸上如圖所示:

①判斷:a   0,b   0,a   b(用”“”“填空).

②若x|2a+b|3|b||32a|+2|b1|,求(2x2-+3x)﹣4xx2+)的值;

2)若c為有理數(shù),,且abbc+ac=﹣99,求(3a4b+2c2+abc的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案