【題目】已知,如圖,AC⊥BC,HF⊥AB,CD⊥AB,∠1與∠2互補.求證:DE⊥AC.
【答案】證明:如圖所示,∵HF⊥AB,CD⊥AB, ∴CD∥HF,
∴∠2+∠3=180°,
又∵∠1與∠2互補,
∴∠2+∠1=180°,
∴∠1=∠3,
∴DE∥BC,
∵AC⊥BC,
∴DE⊥AC.
【解析】根據(jù)AC⊥BC,DE⊥AC,易證DE∥BC,那么∠2+∠3=180°,而∠1與∠2互補,從而可證∠1=∠3,即可得出DE∥BC,結(jié)合AC⊥BC,易得DE⊥AC.
【考點精析】通過靈活運用余角和補角的特征和平行線的判定與性質(zhì),掌握互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān);由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 面積是 (寫成多項式乘法的形式);
(3)比較圖1、圖2陰影部分的面積,可以得到公式 ;
(4)運用你所得到的公式,計算下列各題:
①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某西瓜產(chǎn)地組織40輛汽車裝運完A,B,C三種西瓜共200噸到外地銷售.按計劃,40輛汽車都要裝運,每輛汽車只能裝運同一種西瓜,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:
西瓜種類 | A | B | C |
每輛汽車運載量(噸) | 4 | 5 | 6 |
每噸西瓜獲利(百元) | 16 | 10 | 12 |
(1)設(shè)裝運A種西瓜的車輛數(shù)為x輛,裝運B種西瓜的車輛數(shù)為y輛,求y與x的函數(shù)關(guān)系式;
(2)如果裝運每種西瓜的車輛數(shù)都不少于10輛,那么車輛的安排方案有幾種?并寫出每種安排方案;
(3)若要是此次銷售獲利達(dá)到預(yù)期利潤25萬元,應(yīng)采取怎樣的車輛安排方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=2cm,E、F分別是BC、CD的中點,連接AE、EF、AF,則△AEF的周長為( )
A.2 cm
B.3 cm
C.4 cm
D.3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對角線AC,BD交于點O,點P在線段BC上(不含點B),∠BPE=∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.
(1) 當(dāng)點P與點C重合時(如圖①).求證:△BOG≌△POE;(4分)
(2)通過觀察、測量、猜想:= ,并結(jié)合圖②證明你的猜想;(5分)
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求的值.(用含α的式子表示)(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標(biāo)A(1,3),與x軸的一個交點為B,直線y2=mx+n(m≠0)經(jīng)過A、B兩點,下列結(jié)論: ①當(dāng)x<1時,有y1<y2;②a+b+c=m+n;③b2﹣4ac=﹣12a;④若m﹣n=﹣5,則B點坐標(biāo)為(4,0)
其中正確的是( )
A. ① B. ①② C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師最近6個月的手機話費(單位:元)分別為:27,36,54,29,38,42,這組數(shù)據(jù)的中位數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com