【題目】己知拋物線y=ax2+bx-3a(a>0)與x軸交于A(-1,0)、B兩點,與y軸交于點C.
(1)求點B的坐標;
(2)P是第四象限內拋物線上的一個動點.
①若∠APB=90°,且a<3,求點P縱坐標的取值范圍;
②直線PA、PB分別交y軸于點M、N求證:為定值.
【答案】(1) B(3,0);(2) ①-2≤n<-,②=
【解析】
(1)把A(-1,0)代入拋物線的解析式,可得a、b的關系,代入取y=0,解方程可得B點坐標.
(2)因為P是第四象限內拋物線上的一個動點.可設設P(m,n), 且m >0, n <0,
①把P(m,n)代入函數解析式,得m、n之間的關系,根據勾股定理列出算式,求出m、n的關系,綜合可得到n與a的關系,結合拋物線的頂點坐標及n的取值范圍即可確定n的取值范圍.
②用待定系數法求直線AP、BP解析式,取x=0求出C、M、N的坐標,表示出CM、CN的長,代入計算即可.
(1)拋物線過A(-1,0)
∴0=a-b-3a,b=-2a,
令y=0,則ax2-2ax-3a=0
a(x2-2x-3)=0, 且a>0
∴B(3,0)
(2)設P(m,n), 且m >0, n <0,則n=am2-2am-3a=a(m2-2m-3).
①AP2=n2+ (m+1)2, BP2=n2+ (3-m)2, AB2=16.
∵∠APB=90°,
∴AP2 +BP2= AB2,即:n2+ (m+1)2+n2+ (3-m)2 =16.
整理后:n2=-m2+2m+3
∴n2=-,且n <0,
∴n=-<0
又拋物線頂點(-1,4 a)
∴4a≤-<0,a≥
又∵a<3
∴≤a<3
∵-1<0,∴當≤a<3時,n隨a的增大而增大,
∴-2≤n<-
②將x=0代入y=ax2+bx-3a得:y=-3a
∴C(0,-3a)
直線AP過點A(-1,0)、P(m,n)兩點,其解析式為:
y=a (m-3)x+ a (m-3),M(0, am-3a)
直線BP過點B(3,0)、P(m,n)兩點,其解析式為:
y=a (m+1)x-3a (m+1),N(0, -3am-3a)
∴CM=|-3a-(am-3a)|=| am |
CN=|-3a-(-3am-3a)|=|3am |
∴
科目:初中數學 來源: 題型:
【題目】為弘揚和傳承紅色文化,某校欲在暑假期間組織學生到A、B、C、D四個基地開展研學活動,每個學生可從A、B、C、D四個基地中選擇一處報名參加.小瑩調查了自己所在班級的研學報名情況,繪制成如圖所示的兩幅不完整的統(tǒng)計圖,其中扇形統(tǒng)計圖中A、D兩部分的圓心角度數之比為3:2.請根據圖中信息解答下列問題:
(1)在這項調查中,共調查了多少名學生?
(2)求去往A地和D地的人數,并補全條形統(tǒng)計圖;
(3)小瑩和小亮分別從四個基地中隨機選一處前往,用樹狀圖或列表法求兩人前往不同基地的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,∠OAB=90°且OA=AB,OB=8,OC=5.
(1)求點A的坐標;
(2)點P是從O點出發(fā),沿X軸正半軸方向以每秒1單位長度的速度運動至點B的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,交四邊形ABCD的邊AO或AB于點Q,交OC或BC于點R.設運動時間為t(s),已知t=3時,直線l恰好經過點 C.
求①點P出發(fā)時同時點E也從點B出發(fā),以每秒1個單位的速度向點O運動,點P停止時點E也停止.設△QRE的面積為S,求當0<t<3時S與t的函數關系式;并直接寫出S的最大值.
②是否存在某一時刻t,使得△ORE為直角三角形?若存在,請求出相應t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:為的直徑,點、在上,連接、交于點,過點作的切線交的延長于點,且于點.
(1)如圖,求證:;
(2)如圖,連接,點在上,連接,若,求證:;
(3)如圖,在(2)的條件下,作交于點,過點作交于點,連接,若, ,求線段的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F若平行四邊形CDEF的周長是25cm,AC的長為5cm,則的長是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生1800人,請根據上述調查結果,估計該中學學生中對校園安全知識 達到“了解”和“基本了解”程度的總人數;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次“尋寶”游戲中,“尋寶”人在如圖23-6-9所示的藏寶圖中找到了兩個標志點A(2,3),B(4,1),A,B兩點到“寶藏”點的距離相等,則“寶藏”點的可能坐標是________(填一個即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學生的閱讀興趣,某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據調查結果繪制了統(tǒng)計圖(未完成),請根據圖中信息,解答下列問題:
(1)此次共調查了 名學生;
(2)將條形統(tǒng)計圖1補充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學生2000人,估計該校喜歡“社科類”書籍的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經歷了從虧損到贏利的過程.若該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關系(即前七個月的利潤總和與t之間的關系)為s=t2-2t.
(1)第幾個月末時,公司虧損最多?為什么?
(2)第幾個月末時,公司累積利潤可達30萬元?
(3)求第8個月公司所獲利潤是多少萬元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com