(2013•閘北區(qū)一模)若二次函數(shù)y=mx2-(2m-1)x+m的圖象頂點在y軸上,則m=
1
2
1
2
分析:根據(jù)二次函數(shù)的頂點的橫坐標(biāo)列式求解即可.
解答:解:∵二次函數(shù)y=mx2-(2m-1)x+m的圖象頂點在y軸上,
∴-
-(2m-1)
2m
=0,
解得m=
1
2

故答案為:
1
2
點評:本題考查了二次函數(shù)的性質(zhì),根據(jù)頂點的坐標(biāo)列出等式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)已知:如圖,二次函數(shù)y=
2
3
x2-
4
3
x-
16
3
的圖象與x軸交于點A、B(點A在點B的左側(cè)),拋物線的頂點為Q,直線QB與y軸交于點E.
(1)求點E的坐標(biāo);
(2)在x軸上方找一點C,使以點C、O、B為頂點的三角形與△BOE相似,請直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)在坡度為i=1:2.4的斜坡上每走26米就上升了
10
10
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)已知:如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,點M、N分別在邊AO和邊OD上,且AM=
2
3
AO,ON=
1
3
OD,設(shè)
AB
=
a
,
BC
=
b
,試用
a
、
b
的線性組合表示向量
OM
和向量
MN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)已知:如圖,在△ABC中,BD⊥AC于點D,CE⊥AB于點E,EC和BD相交于點O,聯(lián)接DE.
(1)求證:△EOD∽△BOC;
(2)若S△EOD=16,S△BOC=36,求
AEAC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)已知:如圖,在△ABC中,AB=AC=15,cos∠A=
45
.點M在AB邊上,AM=2MB,點P是邊AC上的一個動點,設(shè)PA=x.
(1)求底邊BC的長;
(2)若點O是BC的中點,聯(lián)接MP、MO、OP,設(shè)四邊形AMOP的面積是y,求y關(guān)于x的函數(shù)關(guān)系式,并出寫出x的取值范圍;
(3)把△MPA沿著直線MP翻折后得到△MPN,是否可能使△MPN的一條邊(折痕邊PM除外)與AC垂直?若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案