【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).
(1)請用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)
(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請在圖中畫出所有這樣的直線AC,并寫出與之對應(yīng)的函數(shù)表達(dá)式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若方程的兩個實(shí)數(shù)根都是整數(shù),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A、B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑;
(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一貨輪在A處測得燈塔P在貨輪的北偏西23°的方向上,隨后貨輪以80海里/時的速度按北偏東30°的方向航行,1小時后到達(dá)B處,此時又測得燈塔P在貨輪的北偏西68°的方向上,求此時貨輪距燈塔P的距離PB.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是一種折疊椅,忽略其支架等的寬度,得到它的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示.若坐板CD平行于地面,前支撐架AB與后支撐架OF分別與CD交于點(diǎn)E,D,ED=25cm,OD=20cm,DF=40cm,∠ODC=60°,∠AED=50°.
(1)求兩支架著地點(diǎn)B,F(xiàn)之間的距離;
(2)若A、D兩點(diǎn)所在的直線正好與地面垂直,求椅子的高度.
(結(jié)果取整數(shù),參數(shù)數(shù)據(jù):sin60°=0.87,cos60°=0.5,tan60°=1.73,sin50°=0.77,cos50°=0.64,tan50°=1.19)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校自主開發(fā)了A書法、B閱讀,C繪畫,D器樂四門選修課程供學(xué)生選擇,每門課程被選到的機(jī)會均等.
(1)若學(xué)生小玲計劃選修兩門課程,請寫出她所有可能的選法;
(2)若學(xué)生小強(qiáng)和小明各計劃選修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣2x2+bx+c經(jīng)過點(diǎn)A(﹣1,﹣3)和點(diǎn)B(2,3)
(1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.
(2)點(diǎn)M(x1,y1)、N(x2,y2)在這條拋物線上,當(dāng)1≤x2<x1時,比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當(dāng) AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)化簡;
(2)如圖,已知△ABC,按如下步驟作圖:
①分別以A,C為圓心,大于AC的長為半徑畫弧,兩弧交于P, Q兩點(diǎn);
②作直線PQ,分別交AB,AC于點(diǎn)E,D;
③過C作CF∥AB交PQ于點(diǎn)F.
求證:△AED≌△CFD;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com