【題目】如圖,△ABC內接于⊙O,過點B作⊙O的切線DE,F(xiàn)為射線BD上一點,連接CF.
(1)求證:∠CBE=∠A;
(2)若⊙O的直徑為5,BF=2,tanA=2,求CF的長.

【答案】證明:(1)如圖,連接BO并延長交⊙O于點M,連接MC,

∴∠A=∠M,∠MCB=90°,
∴∠M+∠MBC=90°,
∵DE是⊙O的切線,
∴∠CBE+∠MBC=90°,
∴∠CBE=∠M,
∴∠CBE=∠A;
(2)解:過點C作CN⊥DE于點N,
∴∠CNF=90°,
由(1)得,∠M=∠CBE=∠A,
∴tanM=tan∠CBE=tanA=2,
在Rt△BCM中,
∵BM=5,tanM=2,
,
在Rt△CNB中,
,,
∴CN=4,BN=2,
∵BF=2,
∴FN=BF+BN=4,
在Rt△FNC中,
∵FN=4,CN=4,

【解析】(1)連接BO并延長交⊙O于點M,連接MC,根據(jù)圓周角定理求出∠A=∠M,∠MCB=90°,求出∠M+∠MBC=90°,根據(jù)切線性質求出∠CBE+∠MBC=90°,推出∠CBE=∠M即可;
(2)過點C作CN⊥DE于點N,求出∠CNF=90°,求出tanM=tan∠CBE=tanA=2,解直角三角形求出BC、CN、BN,求出FN,根據(jù)勾股定理求出即可.
【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖菱形ABCD中,∠ADC=60°,M、N分別為線段AB,BC上兩點,且BM=CN,且AN,CM所在直線相交于E.

1)證明BCMCAN;

2AEM= °;

3)求證DE平分∠AEC;

4)試猜想AE,CE,DE之間的數(shù)量關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結EC

⑴求∠ECD的度數(shù);

⑵若CE=5,求CB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中, ∠BAC=90°, AB=AC=2,點D,E均在邊BC上,且∠DAE=45°,若BD=1,則DE=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD為某中學課外活動小組圍建的一個生物苗圃園,其中兩邊靠墻(墻足夠長),另外兩邊用長度為16米的籬笆(虛線部分)圍成.設AB邊的長度為x米,矩形ABCD的面積為y平方米.
(1)求y與x之間的函數(shù)關系式?(不要求寫自變量的取值范圍);
(2)求矩形ABCD的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=110°,B=85°BMN沿著MN翻折,得到FMN,若MFAD,F(xiàn)NDC,則∠C的度數(shù)為( 。

A. 70° B. 80° C. 90° D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種對正整數(shù)n“F”運算:①當n為奇數(shù)時,F(n)=3n+1;②當n為偶數(shù)時,F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復進行,例如,取n=24,則:

n=13,則第2018“F”運算的結果是( 。

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關系式;
(2)求△AOC的面積;
(3)求不等式kx+b﹣<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,兩個建筑物AB和CD的水平距離為30m,張明同學住在建筑物AB內10樓P室,他觀測建筑物CD樓的頂部D處的仰角為30°,測得底部C處的俯角為45°,求建筑物CD的高度.( 取1.73,結果保留整數(shù).)

查看答案和解析>>

同步練習冊答案