【題目】1如圖①在等邊ABC,點(diǎn)MBC邊上的任意一點(diǎn)(不含端點(diǎn)B,C),連結(jié)AMAM為邊作等邊AMN,連結(jié)CN.求證ACN=∠ABC

【類比探究】

2)如圖②在等邊ABC,點(diǎn)MBC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ACN=∠ABC還成立嗎?請(qǐng)說明理由

【拓展延伸】

3)如圖③,在等腰ABC,BA=BC,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,AM為邊作等腰AMN,使頂角∠AMN=∠ABC連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由

【答案】(1)答案見解析;(2)∠ACN=∠ABC還成立;(3)∠ABC=∠ACN.

【解析】試題分析:(1)利用SAS可證明BAM≌△CAN,繼而得出結(jié)論;

2)也可以通過證明BAM≌△CAN,得出結(jié)論,和(1)的思路完全一樣.

3)首先得出BAC=MAN,從而判定ABC∽△AMN,得到,根據(jù)BAM=BAC﹣∠MAC,CAN=MAN﹣∠MAC,得到BAM=CAN,從而判定BAM∽△CAN,即可得出結(jié)論.

試題解析:解:1∵△ABCAMN是等邊三角形,AB=ACAM=AN,BAC=∠MAN=60°∴∠BAM=∠CAN,在BAMCAN中,AB=ACBAM=∠CAN,AM=AN∴△BAM≌△CANSAS),∴∠ABC=∠ACN

2)結(jié)論ABC=∠ACN仍成立;

理由如下:∵△ABC、AMN是等邊三角形,AB=AC,AM=AN,BAC=∠MAN=60°,∴∠BAM=∠CAN,在BAMCAN中,AB=AC,BAM=∠CAN,AM=AN,∴△BAM≌△CANSAS),∴∠ABC=∠ACN

3ABC=∠ACN;

理由如下:BA=BC,MA=MN,頂角ABC=AMN,底角BAC=MAN,∴△ABC∽△AMN, ,又∵∠BAM=BAC﹣∠MAC,CAN=MAN﹣∠MAC∴∠BAM=CAN∴△BAM∽△CAN,∴∠ABC=ACN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:

(說明:成績(jī)80分及以上為優(yōu)秀,分為良好,分為合格,60分以下為不合格)

b.甲校成績(jī)?cè)?/span>這一組的是:70707071727373737475767778

c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:

學(xué)校

平均分(單位:分)

中位數(shù)(單位:分)

眾數(shù)(單位:分)

74.2

85

73.5

76

84

根據(jù)以上信息,回答下列問題:

1)上表中n的值為_____

2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是___校的學(xué)生(填“甲”或“乙”),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(20),第3次接著運(yùn)動(dòng)到點(diǎn)(32),,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2017次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知A-3,-3),B-2,-1),C-1,-2是直角坐標(biāo)平面上的三點(diǎn).

1)請(qǐng)畫出ABC關(guān)于x軸對(duì)稱的ABC;

2)請(qǐng)寫出B點(diǎn)關(guān)于y軸對(duì)稱的點(diǎn)B2的坐標(biāo);若將點(diǎn)B向上平移h個(gè)單位,欲使其落在A1B1C1內(nèi)部,指出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊的邊長(zhǎng)為,點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)沿的延長(zhǎng)線向右運(yùn)動(dòng),已知點(diǎn)都以的速度同時(shí)開始運(yùn)動(dòng),運(yùn)動(dòng)過程中相交于點(diǎn),點(diǎn)運(yùn)動(dòng)到點(diǎn)后兩點(diǎn)同時(shí)停止運(yùn)動(dòng).

1)當(dāng)是直角三角形時(shí),求,兩點(diǎn)運(yùn)動(dòng)的時(shí)間;

2)求證:在運(yùn)動(dòng)過程中,點(diǎn)始終是線段的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點(diǎn)A.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)請(qǐng)?jiān)跈M線上填寫適當(dāng)?shù)膬?nèi)容,完成下面的解答過程:

如圖,如果∠ABE+BED+CDE360°,試說明ABCD

理由:過點(diǎn)EEFAB

所以∠ABE+BEF   °(   

又因?yàn)椤?/span>ABE+BED+CDE360°

所以∠FED+CDE   °

所以EF   .

又因?yàn)?/span>EFAB,

所以ABCD.

2)如圖,如果ABCD,試說明∠BED=∠B+D

3)如圖,如果ABCD,∠BECαBF平分∠ABE,CF平分∠DCE,則∠BFC的度數(shù)是   (用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場(chǎng)

乙林場(chǎng)

購(gòu)樹苗數(shù)量

銷售單價(jià)

購(gòu)樹苗數(shù)量

銷售單價(jià)

不超過1000棵時(shí)

4/

不超過2000棵時(shí)

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設(shè)購(gòu)買白楊樹苗x棵,到兩家林場(chǎng)購(gòu)買所需費(fèi)用分別為y(元)、y(元).

1)該村需要購(gòu)買1500棵白楊樹苗,若都在甲林場(chǎng)購(gòu)買所需費(fèi)用為   元,若都在乙林場(chǎng)購(gòu)買所需費(fèi)用為   元;

2)分別求出y、yx之間的函數(shù)關(guān)系式;

3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購(gòu)買樹苗合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,AC=24,BD=10,DEABE,

(1)求菱形ABCD的周長(zhǎng);(2)求菱形ABCD的面積;(3)求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案