【題目】如圖,已知點(diǎn)坐標(biāo)為,為軸正半軸上一動(dòng)點(diǎn),則度數(shù)為_________,在點(diǎn)運(yùn)動(dòng)的過(guò)程中的最小值為________.
【答案】30°
【解析】
過(guò)點(diǎn)A作A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C,交x軸于點(diǎn)D,過(guò)點(diǎn)C作CM⊥OA于點(diǎn)M,交x軸于點(diǎn)B,根據(jù)A點(diǎn)坐標(biāo),寫(xiě)出AD和OD長(zhǎng),根據(jù)三角函數(shù)知識(shí)求出∠AOB即可,證BM=,AB=BC,得到,然后在Rt△ACM中,根據(jù)三角函數(shù)知識(shí)求出CM即可.
解:過(guò)點(diǎn)A作A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C,交x軸于點(diǎn)D,過(guò)點(diǎn)C作CM⊥OA于點(diǎn)M,交x軸于點(diǎn)B,
∵點(diǎn)坐標(biāo)為,AD⊥x軸,
∴AD=1,OD=,
∴在Rt△AOD中,
,
∴∠AOB=30°;
∵CM⊥OA,
∴∠OMB=∠AMB=90°,
∴BM=,
∵∠OBM=∠DBC,
∴∠ACM=30°,
∵A,C關(guān)于x軸對(duì)稱(chēng),
∴AB=BC,AD=CD=1,
∴AC=2,
∴,
∴當(dāng)C,B,M三點(diǎn)共線時(shí),有最小值,即CM長(zhǎng),
在Rt△ACM中,
CM=,
故答案為:30°;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知已知拋物線經(jīng)過(guò)原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,直線y=﹣2x﹣1經(jīng)過(guò)拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱(chēng)軸交于點(diǎn)F.
(1)求m的值及該拋物線的解析式
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo).
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱(chēng)軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫(xiě)出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, ,點(diǎn)到兩邊的距離相等,且.
(1)先用尺規(guī)作出符合要求的點(diǎn)(保留作圖痕跡,不需要寫(xiě)作法),然后判斷△ABP的形狀,并說(shuō)明理由;
(2)設(shè),,試用、的代數(shù)式表示的周長(zhǎng)和面積;
(3)設(shè)與交于點(diǎn),試探索當(dāng)邊、的長(zhǎng)度變化時(shí),的值是否發(fā)生變化,若不變,試求出這個(gè)不變的值,若變化,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 在平面直角坐標(biāo)系中,有兩條拋物線關(guān)于x軸對(duì)稱(chēng),且它們的頂點(diǎn)相距6個(gè)單位長(zhǎng)度,若其中一條拋物線的函數(shù)表達(dá)式為y=﹣x2+4x+2m,則m的值是( 。
A.B.C.1D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (1)問(wèn)題感知 如圖1,在△ABC中,∠C=90°,且AC=BC,點(diǎn)P是邊AC的中點(diǎn),連接BP,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°到線段PD.連接AD.過(guò)點(diǎn)P作PE∥AB交BC于點(diǎn)E,則圖中與△BEP全等的三角形是 ,∠BAD= °;
(2)問(wèn)題拓展 如圖2,在△ABC中,AC=BC=AB,點(diǎn)P是CA延長(zhǎng)線上一點(diǎn),連接BP,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)到線段PD,使得∠BPD=∠C,連接AD,則線段CP與AD之間存在的數(shù)量關(guān)系為CP=AD,請(qǐng)給予證明;
(3)問(wèn)題解決 如圖3,在△ABC中,AC=BC=AB=2,點(diǎn)P在直線AC上,且∠APB=30°,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°到線段PD,連接AD,請(qǐng)直接寫(xiě)出△ADP的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,是的外接圓,過(guò)點(diǎn)作交于點(diǎn),連接交于點(diǎn),延長(zhǎng)至點(diǎn),使,連接.
(1)求證:;
(2)求證:是的切線;
(3)如圖2,若點(diǎn)是的內(nèi)心,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】武警戰(zhàn)士乘一沖鋒舟從地逆流而上,前往地營(yíng)救受困群眾,途經(jīng)地時(shí),由所攜帶的救生艇將地受困群眾運(yùn)回地,沖鋒舟繼續(xù)前進(jìn),到地接到群眾后立刻返回地,途中曾與救生艇相遇.沖鋒舟和救生艇距地的距離(千米)和沖鋒舟出發(fā)后所用時(shí)間(分)之間的函數(shù)圖象如圖所示.假設(shè)營(yíng)救群眾的時(shí)間忽略不計(jì),水流速度和沖鋒舟在靜水中的速度不變.
(1)請(qǐng)直接寫(xiě)出沖鋒舟從地到地所用的時(shí)間.
(2)求水流的速度.
(3)沖鋒舟將地群眾安全送到地后,又立即去接應(yīng)救生艇.已知救生艇與地的距離(千米)和沖鋒舟出發(fā)后所用時(shí)間(分)之間的函數(shù)關(guān)系式為,假設(shè)群眾上下船的時(shí)間不計(jì),求沖鋒舟在距離地多遠(yuǎn)處與救生艇第二次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD,CD,過(guò)點(diǎn)D作PD∥BC與AB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:BD2=PBAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列分式方程解應(yīng)用題:
“5G改變世界,5G創(chuàng)造未來(lái)”.2019年9月,全球首個(gè)5G上海虹橋火車(chē)站,完成了5G網(wǎng)絡(luò)深度覆蓋,旅客可享受到高速便捷的5G網(wǎng)絡(luò)服務(wù).虹橋火車(chē)站中5G網(wǎng)絡(luò)峰值速率為4G網(wǎng)絡(luò)峰值速率的10倍.在峰值速率下傳輸7千兆數(shù)據(jù),5G網(wǎng)絡(luò)比4G網(wǎng)絡(luò)快630秒,求5G網(wǎng)絡(luò)的峰值速率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com