【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB.證明:

(1)AE=DC;
(2)四邊形ADCE為矩形.

【答案】
(1)證明:在△ABC中,∵AB=AC,AD⊥BC,

∴BD=DC,

∵AE∥BC,DE∥AB,

∴四邊形ABDE為平行四邊形,

∴BD=AE,

∵BD=DC,

∴AE=DC


(2)證明:∵AE∥BC,AE=DC,

∴四邊形ADCE為平行四邊形.

又∵AD⊥BC,

∴∠ADC=90°,

∴四邊形ADCE為矩形


【解析】(1)等腰三角形的三線合一,可證明BD=CD,因為AE∥BC,DE∥AB,所以四邊形ABDE為平行四邊形,所以BD=AE,從而得出結論.(2)先證明四邊形ADCE為平行四邊形,再證明有一個角是直角即可.
【考點精析】本題主要考查了等腰三角形的性質和平行四邊形的判定與性質的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當點P是線段BC的中點時,求點P的坐標;
(3)在(2)的條件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求代數(shù)式的值:( )÷ ,其中sin230°<a<tan260°,請你取一個合適的整數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將平行四邊形ABCD的邊AB延長至點E,使BE=AB,連接DE,EC,DE,交BC于點O.

(1)求證:△ABD≌△BEC;
(2)連接BD,若∠BOD=2∠A,求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中一次函數(shù) 的圖象分別交x、y軸于點A、B,與一次函數(shù)y=x的圖象交于第一象限內的點C.

(1)分別求出A、B、C、的坐標;
(2)求出△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=4,SABC=4 ,點P、Q、K分別為線段AB、BC、AC上任意一點,則PK+QK的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAC=∠ACB,要使四邊形ABCD成為平行四邊形,則應增加的條件不能是(

A.AD=BC
B.OA=OC
C.AB=CD
D.∠ABC+∠BCD=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD對折,點C落在點C′的位置,BC′交AD于點G.
(1)求證:AG=C′G;
(2)如圖2,再折疊一次,使點D與點A重合,得折痕EN,EN交AD于點M,求EM的長.

查看答案和解析>>

同步練習冊答案