如圖,矩形ABCD的長與寬分別是2cm和1cm,AB在直線L上.依次以B,C′,D″為中心將矩形ABCD按順時針方向旋轉(zhuǎn)90°,這樣點A走過的曲線依次為
AA
,
AA
AA″′
,其中
AA
交CD于點P.精英家教網(wǎng)
(1)求矩形A′BC′D′的對角線A′C′的長;
(2)求
AA
的長;
(3)求圖中精英家教網(wǎng)部分的面積.
(4)求圖中精英家教網(wǎng)部分的面積.
分析:(1)由于旋轉(zhuǎn)得到的兩個圖形全等,求出矩形ABCD的對角線就是矩形A′BC′D′的對角線,利用勾股定理求解即可;
(2)直接利用弧長公式計算就可以了,圓心角是90°;
(3)連接A″C′,就會得到一個以半徑A′C′的扇形,利用面積割補,可看出陰影部分面積就等于扇形面積.
(4)連接BP,利用所給的矩形的邊長,可得∠CPB的正弦值,故可求∠CPB,再利用平行可得到∠APB的度數(shù),而陰影面積就等于扇形ABP與Rt△BPC的面積之和.因此可求得所求的面積.
解答:解:(1)由旋轉(zhuǎn)得A′C′=AC=
AB2+AD2
=
22+12
=
5
(cm).

(2)
AA
的長為
90π×2
180
=π(cm).精英家教網(wǎng)

(3)連接A″C′,
由旋轉(zhuǎn)的性質(zhì),△A′D′C′≌△A″D″C′,
故所求的面積S=S扇形C′A′A′′=
90π×(A′C′)2
360
=
1
4
π×(
5
2=
5
4
π(cm2).

(4)連接BP,在Rt△BCP中,BC=1,BP=BA=2.
∴∠BPC=30°,CP=
3
,
∴∠ABP=30°,
∴T=S扇形ABP+S△PBC=
30π×22
360
+
1
2
×1×
3
=
π
3
+
3
2
(cm2).
點評:本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,弧長、扇形公式計算,反三角函數(shù)等知識.有一定難度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線AC和BD相交于點O,過點O的直線分別交AD和BC于點E、F,AB=2,BC=3,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=
kx
的圖象上,若點A的坐標為(-2,-2),則k的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的一邊AD在x軸上,對角線AC、BD交于點E,過B點的雙曲線y=
kx
(x>0)
恰好經(jīng)過點E,AB=4,AD=2,則K的值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•葫蘆島)如圖,矩形ABCD的對角線交于點O,∠BOC=60°,AD=3,動點P從點A出發(fā),沿折線AD-DO以每秒1個單位長的速度運動到點O停止.設(shè)運動時間為x秒,y=S△POC,則y與x的函數(shù)關(guān)系大致為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD的對角線交于O點,∠AOB=120°,AD=5cm,則AC=
10
10
cm.

查看答案和解析>>

同步練習冊答案