【題目】如圖,∠ACB90°ACCD,過(guò)點(diǎn)DAB的垂線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)E.AB2DE,則∠BAC的度數(shù)為________.

【答案】22.5°

【解析】

連接AD,延長(zhǎng)AC、DE交于M,求出∠CAB=CDM,根據(jù)全等三角形的判定得出ACB≌△DCM,求出AB=DM,求出AD=AM,根據(jù)等腰三角形的性質(zhì)得出即可.

解: 連接AD,延長(zhǎng)AC、DE交于M,

∵∠ACB=90°AC=CD,

∴∠DAC=ADC=45°

∵∠ACB=90°,DEAB

∴∠DEB=90°=ACB=DCM,

∵∠ABC=DBE

∴由三角形內(nèi)角和定理得:∠CAB=CDM,

ACBDCM

∴△ACB≌△DCMASA),

AB=DM

AB=2DE,

DM=2DE,

DE=EM,

DEAB,

AD=AM,

∴∠BAC=DAE=DAC=×45°=22.5°

故答案為:22.5°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)部的一點(diǎn),∠AOB=30°,OP=8cm,M,NOAOB上的兩個(gè)動(dòng)點(diǎn),則△MPN周長(zhǎng)的最小值_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+mx+m2=0.

(1)求證:不論m取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根;

(2)若該方程的一個(gè)根為1,求該方程的另一根。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如圖,轉(zhuǎn)盤(pán)被平均分成份),并規(guī)定:顧客每購(gòu)物滿(mǎn)元,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)盤(pán),那么可直接獲得元的購(gòu)物券

求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的概率;

轉(zhuǎn)轉(zhuǎn)盤(pán)和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,DAC邊上一點(diǎn),∠A=36,∠C=72,∠ADB=108。

求證:(1)AD=BD=BC;

(2)點(diǎn)D是線(xiàn)段AC的黃金分割點(diǎn)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字,解答問(wèn)題:

大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.由此我們得到一個(gè)真命題:如果,其中x是整數(shù)且0y1,那么x1,y.請(qǐng)解答:

1)如果ab,其中a是整數(shù),且0b1,那么a b .

2)如果90xy,其中x是整數(shù),且0y1,求x59-y的平方根.

3)如果6的整數(shù)部分為m6-的小數(shù)部分為n,求m-n-的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,再回答問(wèn)題:有一些幾何圖形可以被某條直線(xiàn)分成面積相等的兩部分,我們將“把一個(gè)幾何圖形分成面積相等的兩部分的直線(xiàn)叫做該圖形的二分線(xiàn)”,如:圓的直徑所在的直線(xiàn)是圓的“二分線(xiàn)”,正方形的對(duì)角線(xiàn)所在的直線(xiàn)是正方形的“二分線(xiàn)”。

解決下列問(wèn)題:

(1)菱形的“二分線(xiàn)”可以是____________________________________。

(2)三角形的“二分線(xiàn)”可以是__________________________________。

(3)在下圖中,試用兩種不同的方法分別畫(huà)出等腰梯形ABCD的“二分線(xiàn)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,連接BC,點(diǎn)D為拋物線(xiàn)的頂點(diǎn),點(diǎn)P是第四象限的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)D重合).

(1)求∠OBC的度數(shù);

(2)連接CD,BD,DP,延長(zhǎng)DP交x軸正半軸于點(diǎn)E,且S△OCE=S四邊形OCDB,求此時(shí)P點(diǎn)的坐標(biāo);

(3)過(guò)點(diǎn)P作PF⊥x軸交BC于點(diǎn)F,求線(xiàn)段PF長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】61日起,我國(guó)將全面試行居民階梯式電價(jià),某市出臺(tái)了實(shí)施細(xì)則,具體規(guī)定如下:

設(shè)用電量為a度,當(dāng)a≤150時(shí),電價(jià)為現(xiàn)行電價(jià),每度0.51元;當(dāng)150a≤240時(shí),在現(xiàn)行電價(jià)基礎(chǔ)上,每度提高0.05元;當(dāng)a240時(shí),在現(xiàn)行電價(jià)基礎(chǔ)上,每度提高0.30元.設(shè)某戶(hù)的月用電量為x(度),電費(fèi)為y(元).則yx之間的函數(shù)關(guān)系的大致圖像是( 。

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案