【題目】如圖,直線分別于軸、軸交于A、B兩點(diǎn),與直線交于點(diǎn)C(2,4),平行于軸的直線從原點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿軸向右平移,直線分別交直線AB、直線OC于點(diǎn)D、E,以DE為邊向左側(cè)作正方形DEFG,當(dāng)直線經(jīng)過點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)直線的運(yùn)動(dòng)時(shí)間為(秒).
(1)
(2)設(shè)線段DE的長度為求與之間的函數(shù)關(guān)系式;
(3)當(dāng)正方形DEFG的邊GF落在軸上,求出的值;
(4)當(dāng)時(shí),若正方形DEFG和△OCB重疊部分面積為4,則的值為________.
【答案】(1)b=8,k=2;(2)當(dāng)t<2時(shí),d=-4t+8;當(dāng)t>2時(shí),d=4x-8;(3)t=;(4)t=1.
【解析】
(1)直接把點(diǎn)的坐標(biāo)代入即可;(2)根據(jù)正方形性質(zhì)和函數(shù)圖象,分兩種情況當(dāng)t<2時(shí);當(dāng)t>2時(shí);(3)設(shè)D(t,-2t+8),E(t,2t),DE=-4t+8;則 t=-4t+8;(4)由t(-4t+8)=4可得t.
解:(1)因?yàn)橹本分別于軸、軸交于A、B兩點(diǎn),與直線交于點(diǎn)C(2,4),
所以,
解得b=8,k=2;
(2)根據(jù)正方形性質(zhì),當(dāng)t<2時(shí),d=-4t+8;
當(dāng)t>2時(shí),d=4x-8;
(3)設(shè)D(t,-2t+8),E(t,2t),DE=-4t+8;
則 t=-4t+8,
解得t=;
(4)由t(-4t+8)=4,解得t=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=45°,,BC=6.
(1)求△ABC面積;
(2)AC的垂直平分線交AC于點(diǎn)D,交BC于點(diǎn)E. 求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解八年級(jí)學(xué)生課外閱讀情況,隨機(jī)抽取20名學(xué)生平均每周用于課外閱讀讀的時(shí)間(單位:),過程如下:
(收集數(shù)據(jù))
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
(整理數(shù)據(jù))
課外閱讀時(shí)間 | ||||
等級(jí) | ||||
人數(shù) | 3 | 8 |
(分析數(shù)據(jù))
平均數(shù) | 中位數(shù) | 眾數(shù) |
80 |
請(qǐng)根據(jù)以上提供的信息,解答下列問題:
(1)填空:______,______,______,______;
(2)如果每周用于課外讀的時(shí)間不少于為達(dá)標(biāo),該校八年級(jí)現(xiàn)有學(xué)生200人,估計(jì)八年級(jí)達(dá)標(biāo)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】外賣小哥騎車從商家出發(fā),向東騎了3千米到達(dá)小林家,繼續(xù)騎2.5千米到達(dá)小紅家,然后向西騎了10千米到達(dá)小明家,最后返回商家。
(1)以商家為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長度表示1千米,在數(shù)軸上表示出小明家,小林家,小紅家的位置。(小林家用點(diǎn)A表示,小紅家用點(diǎn)B表示,小明家用點(diǎn)C表示)
(2)小明家距小林家______千米
(3)若外賣小哥在騎車過程中每千米耗時(shí)3分鐘,那么外賣小哥在整個(gè)過程中共用時(shí)多久?(假設(shè)外賣小哥一直在勻速行駛,在每戶人家上門送外賣的時(shí)間忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=+x的圖象與性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.
(1)函數(shù)y=+x的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 |
| 2 | 3 | 4 | 5 | … | |||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ |
|
| 3 | m |
| … |
則m= ;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)該函數(shù)的圖象關(guān)于點(diǎn)( , )成中心對(duì)稱;
(5)直線y=m與該函數(shù)的圖象無交點(diǎn),則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有如下說法:①直線是一個(gè)平角;②如果線段AB=BC,則B是線段AC的中點(diǎn);③射線AB與射線BA表示同一射線;④用一個(gè)擴(kuò)大2倍的放大鏡去看一個(gè)角,這個(gè)角擴(kuò)大2倍;⑤兩點(diǎn)之間,直線最短;⑥120.5°=120°30′,其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A是拋物線上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A在第一象限內(nèi).AE⊥y軸于點(diǎn)E,點(diǎn)B坐標(biāo)為(0,2),直線AB交軸于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于y軸對(duì)稱,直線DE與AB相交于點(diǎn)F,連結(jié)BD.設(shè)線段AE的長為m,△BED的面積為S.
(1)當(dāng)時(shí),求S的值.
(2)求S關(guān)于的函數(shù)解析式.
(3)①若S=時(shí),求的值;
②當(dāng)m>2時(shí),設(shè),猜想k與m的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長交CF于點(diǎn)G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號(hào))
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
考點(diǎn):三角形綜合題.
【題型】填空題
【結(jié)束】
19
【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D、F是AB邊上的兩點(diǎn),以DF為直徑的⊙O與BC相交于點(diǎn)E,連接EF,過F作FG⊥BC于點(diǎn)G,其中∠OFE=∠A.
(1)求證:BC是⊙O的切線;
(2)若sinB=,⊙O的半徑為r,求△EHG的面積(用含r的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com