【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為邊AB中點(diǎn),點(diǎn)E、F分別在射線CA、BC上,且AE=CF,連結(jié)EF.
猜想:如圖①,當(dāng)點(diǎn)E、F分別在邊CA和BC上時(shí),線段DE與DF的大小關(guān)系為________.
探究:如圖②,當(dāng)點(diǎn)E、F分別在邊CA、BC的延長(zhǎng)線上時(shí),判斷線段DE與DF的大小關(guān)系,并加以證明.
應(yīng)用:如圖②,若DE=4,利用探究得到的結(jié)論,求△DEF的面積.
【答案】猜想:DE=DF.
如圖1,連結(jié)CD,
∵∠ACB=90°,AC=BC,
∴∠CAD=45°,
∵D為邊AB的中點(diǎn),
∴CD=AD,∠BCD= ∠ACB=45°,
∴∠EAD=∠FCD,
在△AED和△CFD中
∴△ADE≌△CFD(SAS),
∴DE=DF,
故答案為:DE=DF;
探究:DE=DF,證明如下:
如圖2,連接CD,
∵∠ACB=90°,AC=BC,
∴∠CAD=45°,
∵D為AB中點(diǎn),
∴AD=CD,∠BCD= ∠ACB=45°,
∵∠CAD+∠EAD=∠BCD+∠FCD=180°,
∴∠EAD=∠FCD=135°,
在△ADE和△CDF中
∴△ADE≌△CDF(SAS),
∴DE=DF;
應(yīng)用:
∵△ADE≌△CDF,
∴∠ADE=∠CDF,
∵∠ADC=90°,
∴∠EDF=90°,
∵DE=DF=4,
∴S△DEF= DE2= ×42=8.
【解析】猜想:連接CD,可證明△ADE≌△CFD,可得出結(jié)論;探究:連接CD,同(1)可證明△ADE≌△CFD,可證得DE=DF;應(yīng)用:由△ADE≌△CFD可證得∠EDF=90°,容易求得△DEF的面積.
【考點(diǎn)精析】本題主要考查了全等三角形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣kx+k﹣1=0.
(1)求證:此一元二次方程恒有實(shí)數(shù)根.
(2)無(wú)論k為何值,該方程有一根為定值,請(qǐng)求出此方程的定值根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被平均分成3個(gè)扇形,分別標(biāo)有1、2、3三個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤為一次游戲,當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).
(1)請(qǐng)你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)兩次轉(zhuǎn)盤,第一次轉(zhuǎn)得的數(shù)字記為m,第二次記為n,A的坐標(biāo)為(m,n),則A點(diǎn)在函數(shù)y= 上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在函數(shù)y=﹣ (x<0)的圖象上,點(diǎn)B在函數(shù)y= (x>0)的圖象上,點(diǎn)C在x軸上.若四邊形OABC為平行四邊形,則△OBC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D、E分別為邊AB、BC的中點(diǎn),點(diǎn)F在邊AC的延長(zhǎng)線上,∠FEC=∠B,求證:四邊形CDEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)0是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α,OC=CD,
且∠DOC=60°連接OD.
(1)求證:△COD是等邊三角形
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由
(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:
①AD∥BC;②∠BDC=∠BAC;③∠ADC=90°-∠ABD; ④BD平分∠ADC.
其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長(zhǎng)MP交CN于點(diǎn)E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,半徑OA垂直于弦BC,垂足為E,點(diǎn)D在CA的延長(zhǎng)線上,若∠DAB+
∠AOB=60°
(1)求∠AOB的度數(shù);
(2)若AE=1,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com