精英家教網 > 初中數學 > 題目詳情

【題目】如圖,拋物線x軸交于點AB兩點(點A在點B左邊),與y軸交于點C

1)求A,B兩點的坐標.

2)點P是線段BC下方的拋物線上的動點,連結PC,PB

①是否存在一點P,使△PBC的面積最大,若存在,請求出△PBC的最大面積;若不存在,試說明理由.

②連結AC,AP,APBC于點F,當∠CAP=∠ABC時,求直線AP的函數表達式.

【答案】1A、B的坐標分別為(﹣1,0)、(4,0);(2)①存在,見解析,面積的最大值為4,②.

【解析】

1)令y=0,則x=1-4,令x=0,則y=2,即可求解;

2)①SPBC=×PH×OB,即可求解;

②證明ACF∽△BCA,求得:CF=,BF=BC-CF=,由BF2=m-42+m-22=2,即可求解.

1)令y0,則x1或﹣4,令x0,則y2,

即點AB、C的坐標分別為(﹣1,0)、(40)、(0,﹣2);

2)①存在,理由:過點PHPy軸交BC于點H,

將點BC的坐標代入一次函數表達式ykx+b得:,解得:,

故直線BC的表達式為:yx2,

設點P坐標為(x,)、Hx,x2),

SPBC×PH×OB×x2×4=﹣x2+4x,

∵﹣10,故SPBC有最大值,

x2時,面積的最大值為4,此時點P2,﹣3);

②∠CAP=∠ABC,∠ACF=∠ACF,∴△ACF∽△BCA,

AC2BCCF,其中AC,BC2

故:CF,BFBCCF

設點F的坐標為(m,m2),

則:BF2=(m42+m22=(2,

解得:m17(舍去m7),

故點F坐標(1,﹣),

將點AF坐標代入一次函數表達式ykx+b,

同理可得:直線AF(或直線AP)的表達式為:y=﹣x

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,AB=4,點F,C是⊙O上兩點,連接AC,AF,OC,弦AC平分∠FAB,BOC=60°,過點CCDAFAF的延長線于點D,垂足為點D.

(1)求扇形OBC的面積(結果保留π);

(2)求證:CD是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】RtABC中,∠ACB90°,BE平分∠ABCD是邊AB上一點,以BD為直徑的O經過點E,且交BC于點F

(1)求證:ACO的切線;

(2)CF2,CE4,求O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】折紙飛機是我們兒時快樂的回憶,現有一張長為290mm,寬為200mm的白紙,如圖所示,以下面幾個步驟折出紙飛機:(說明:第一步:白紙沿著EF折疊,AB邊的對應邊AB′與邊CD平行,將它們的距離記為x;第二步:將EM,MF分別沿著MH,MG折疊,使EMMF重合,從而獲得邊HGAB′的距離也為x),則PD=______mm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為迎接2011年高中招生考試,某中學對全校九年級學生進行了一次數學摸底考試,并隨機抽取了部分學生的測試成績作為樣本進行,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據圖中所給信息,下列問題:

1)請將表示成績類別為的條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,表示成績類別為優(yōu)的扇形所對應的圓心角是 72 度;

3)學校九年級共有1000人參加了這次數學考試,估算該校九年級共有多少名學生的數學成績可以達到優(yōu)秀?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調査,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數分布直方圖和扇形統(tǒng)計圖(均不完整),請根據圖中所給信息解答下列問題:

1)在這次評價中,一共抽査了   名學生;

2)在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數為   度;

3)請將頻數分布直方圖補充完整:

4)如果全市有30000名初二學生,那么在試卷評講課中,請估計“獨立思考”的約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】央視經典詠流傳開播以來受到社會廣泛關注.我市某校就中華文化我傳承——地方戲曲進校園的喜愛情況進行了隨機調查,對收集的信息進行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖所提供的信息解答下列問題:

圖中A表示很喜歡”,B表示喜歡”,C表示一般”,D表示不喜歡”.

(1)被調查的總人數是_____________人,扇形統(tǒng)計圖中C部分所對應的扇形圓心角的度數為_______.

(2)補全條形統(tǒng)計圖;

(3)若該校共有學生1800人,請根據上述調查結果,估計該校學生中A類有__________人;

(4)在抽取的A5人中,剛好有3個女生2個男生,從中隨機抽取兩個同學擔任兩角色,用樹形圖或列表法求出被抽到的兩個學生性別相同的概率.

查看答案和解析>>

同步練習冊答案