【題目】在同一平面直角坐標系中,函數(shù)y=ax2+bx與y=﹣bx+a的圖象可能是( 。
A.B.C.D.
【答案】B
【解析】
首先根據(jù)圖形中給出的一次函數(shù)圖象確定a、b的符號,進而運用二次函數(shù)的性質(zhì)判斷圖形中給出的二次函數(shù)的圖象是否符合題意,根據(jù)選項逐一討論解析,即可解決問題.
解:A、對于直線y=-bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線y=ax2+bx來說,圖象應(yīng)開口向下,故不合題意;
B、對于直線y=-bx+a來說,由圖象可以判斷,a>0,b<0;而對于拋物線y=ax2+bx來說,圖象開口向上,對稱軸x=->0,在y軸的右側(cè),符合題意,圖形正確;
C、對于直線y=-bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線y=ax2+bx來說,對稱軸x=-<0,應(yīng)位于y軸的左側(cè),故不合題意;
D、對于直線y=-bx+a來說,由圖象可以判斷,a>0,b<0;而對于拋物線y=ax2+bx來說,圖象應(yīng)開口向下,故不合題意.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā)沿AB方向以4cm/s的速度向B點運動,同時點Q從C點出發(fā)沿CA方向以3cm/s的速度向A點運動,設(shè)運動時間為xs.
(1)當x=時,求;
(2)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠A=36°,作底角∠ABC的平分線BD交AC于點D,易得等腰△BCD,作等腰△BCD底角∠BCD的平分線CE,交BD于點E,得等腰△CDE,再作等腰△CDE底角∠CDE的平分線DF,交于CE于點F,…,若已知AB=b,BC=a,記△ABC為第一個等腰三角形,△BCD為第二個等腰三角形…,則的值為_____;第n個等腰三角形的底邊長為_____.(含有b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0), 對稱軸為直線x=2,下列結(jié)論:①拋物線與x軸的另一個交點是(5,0); ②4a-2b+c>0:③4a+b=0;④當x>-1時,y的值隨x值的增大而增大。其中正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)了一款成本為50元的新型玩具,投放市場進行試銷售.其銷售單價不低于成本,按照物價部門規(guī)定,銷售利潤率不高于90%,市場調(diào)研發(fā)現(xiàn),在一段時間內(nèi),每天銷售數(shù)量y(個)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖所示:
(1)根據(jù)圖象,直接寫出y與x的函數(shù)關(guān)系式;
(2)該公司要想每天獲得3000元的銷售利潤,銷售單價應(yīng)定為多少元
(3)銷售單價為多少元時,每天獲得的利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c與x軸交于A,B兩點(點A在點B的左側(cè)),且A(﹣1,0),B(4,0),與y軸交于點C,C點的坐標為(0,﹣2),連接BC,以BC為邊,點O為對稱中心作菱形BDEC.點P是x軸上的一個動點,設(shè)點P的坐標為(m,0),過點P作x軸的垂線交拋物線于點Q,交BD于點M.
(1)求拋物線的解析式.
(2)x軸上是否存在一點P,使三角形PBC為等腰三角形,若存在,請直接寫出點P的坐標;若不存在,請說明理由.
(3)當點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標:
(3)在拋物線上存在點P(不與C重合),使得△APB的面積與△ACB的面積相等,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com