【題目】如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為_____.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c滿足下表:下列說法:①該函數(shù)圖像為開口向下的拋物線;②該函數(shù)圖像的頂點坐標為:(1,3);③方程ax2+bx+c=-2在2與3之間存在一個根;④A(-2018,m),B(2019,n)在該二次函數(shù)圖像上,則m>n.其中正確的是_______(只需寫出序號).
x | … | -1 | 0 | 1 | 2 | … |
y | … | -5 | 1 | 3 | 1 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿EF折疊,使頂點C恰好落在AB邊的C1處,點D落在點D1處,C1D1交線段AE于點G.
(1)求證:△BC1F∽△AGC1;
(2)若C1是AB的中點,AB=6,BC=9,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(5,0),點B的坐標為(8,4),點C的坐標為(3,4),連接AB、BC、OC
(1)求證四邊形OABC是菱形;
(2)直線l過點C且與y軸平行,將直線l沿x軸正方向平移,平移后的直線交x軸于點P.
①當OP:PA=3:2時,求點P的坐標;
②點Q在直線1上,在直線l平移過程中,當△COQ是等腰直角三角形時,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標平面內(nèi),小明站在點A(﹣10,0)處觀察y軸,眼睛距地面1.5米,他的前方5米處有一堵墻DC,若墻高DC=2米,則小明在y軸上的盲區(qū)(即OE的長度)為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】結(jié)果如此巧合!
下面是小穎對一道題目的解答.
題目:如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點D,AD=3,BD=4,求△ABC的面積.
解:設△ABC的內(nèi)切圓分別與AC、BC相切于點E、F,CE的長為x.
根據(jù)切線長定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=ACBC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小穎發(fā)現(xiàn)12恰好就是3×4,即△ABC的面積等于AD與BD的積.這僅僅是巧合嗎?
請你幫她完成下面的探索.
已知:△ABC的內(nèi)切圓與AB相切于點D,AD=m,BD=n.
可以一般化嗎?
(1)若∠C=90°,求證:△ABC的面積等于mn.
倒過來思考呢?
(2)若ACBC=2mn,求證∠C=90°.
改變一下條件……
(3)若∠C=60°,用m、n表示△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知直線y=-x+4與y軸交于A點,與x軸交于B點,C點坐標為(﹣2,0).
(1)求經(jīng)過A,B,C三點的拋物線的解析式;
(2)如果M為拋物線的頂點,聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=x2+bx+c經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com