【題目】如圖是某臺(tái)階的一部分,如果A點(diǎn)的坐標(biāo)為(0,0),B點(diǎn)的坐標(biāo)為(1,1),
(1)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出其余各點(diǎn)的坐標(biāo);
(2)如果臺(tái)階有10級(jí),請(qǐng)你求出該臺(tái)階的長度和高度;
(3)若這10級(jí)臺(tái)階的寬度都是2m,單位長度為1m,現(xiàn)要將這些臺(tái)階鋪上地毯,需要多少平方米?
【答案】(1)建立平面直角坐標(biāo)系見解析,C(2,2),D(3,3),E(4,4),F(xiàn)(5,5);(2)11;10;(3)需要42平方米.
【解析】
(1)以點(diǎn)A為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,然后寫出各點(diǎn)的坐標(biāo)即可;
(2)根據(jù)平移的性質(zhì)求橫向與縱向的長度,即為臺(tái)階的長度和高度;
(3)根據(jù)(2)求出地毯的長度,然后乘以臺(tái)階的寬度計(jì)算即可得解.
(1)建立平面直角坐標(biāo)系如圖所示,
C(2,2),D(3,3),E(4,4),F(xiàn)(5,5);
(2)臺(tái)階的長度:1×(10+1)=11,
高度:1×10=10;
(3)∵單位長度為1m,
∴地毯的長度為:(11+10)×1=21m,
∵臺(tái)階的寬度都是2m,
∴地毯的面積為21×2=42m2,
答:將這些臺(tái)階鋪上地毯,需要42平方米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組 有且僅有四個(gè)整數(shù)解,且使關(guān)于y的分式方程 + =2有非負(fù)數(shù)解,則所以滿足條件的整數(shù)a的值之和是( )
A.3
B.1
C.0
D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠ACD是△ABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于點(diǎn)E.
(1)求∠E的度數(shù).
(2)請(qǐng)猜想∠A與∠E之間的數(shù)量關(guān)系,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果點(diǎn)P坐標(biāo)為(m,n),向量 可以用點(diǎn)P的坐標(biāo)表示為 =(m,n).
已知: =(x1 , y1), =(x2 , y2),如果x1x2+y1y2=0,那么 與 互相垂直,下列四組向量:
① =(2,1), =(﹣1,2);
② =(cos30°,tan45°), =(1,sin60°);
③ =( ﹣ ,﹣2), =( + , );
④ =(π0 , 2), =(2,﹣1).
其中互相垂直的是(填上所有正確答案的符號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已點(diǎn)A(3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn).
(1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo):C __________,D ____________ ;
(2)把這些點(diǎn)按A-B-C-D-A順次連接起來,這個(gè)圖形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, , ,試說明:BE∥CF.
完善下面的解答過程,并填寫理由或數(shù)學(xué)式:
解:∵ (已知)
∴AE∥ ( 。
∴( 。
∵(已知)
∴ ( 。
∴DC∥AB( 。
∴( 。
即
∵(已知)
∴( )
即
∴BE∥CF( 。 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P,下列說法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正確的個(gè)數(shù)有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為等邊△ABC的邊AC上一點(diǎn),E為直線AB上一點(diǎn),CD=BE.
(1)如圖1,求證;AD=DE;
(2)如圖2,DE交CB于點(diǎn)P.
①若DE⊥AC,PC=6,求BP的長;
②猜想PD與PE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過點(diǎn)C(2,0)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CD與y軸相交于點(diǎn)E.
(1)直線CD的函數(shù)表達(dá)式為 ;(直接寫出結(jié)果)
(2)點(diǎn)Q為線段DE上的一個(gè)動(dòng)點(diǎn),連接BQ.
①若直線BQ將△BDE的面積分為1:2兩部分,試求點(diǎn)Q的坐標(biāo);
②將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的坐標(biāo)軸上,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo): .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com