【題目】(1)觀察猜想
如圖①點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為;
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請(qǐng)直接寫出BD的長.
【答案】(1)BC=BD+CE,(2);(3).
【解析】
(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關(guān)系;
(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長;
(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質(zhì)得到CE=AF,ED=DF,設(shè)AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出
的值,根據(jù)勾股定理即可求出BD的長.
解:(1)觀察猜想
結(jié)論: BC=BD+CE,理由是:
如圖①,∵∠B=90°,∠DAE=90°,
∴∠D+∠DAB=∠DAB+∠EAC=90°,
∴∠D=∠EAC,
∵∠B=∠C=90°,AD=AE,
∴△ADB≌△EAC,
∴BD=AC,EC=AB,
∴BC=AB+AC=BD+CE;
(2)問題解決
如圖②,過D作DE⊥AB,交BA的延長線于E,
由(1)同理得:△ABC≌△DEA,
∴DE=AB=2,AE=BC=4,
Rt△BDE中,BE=6,
由勾股定理得:
(3)拓展延伸
如圖③,過D作DE⊥BC于E,作DF⊥AB于F,
同理得:△CED≌△AFD,
∴CE=AF,ED=DF,
設(shè)AF=x,DF=y,
則,解得:
∴BF=2+1=3,DF=3,
由勾股定理得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一組方程:①,②,③,…小明通過觀察,發(fā)現(xiàn)了其中蘊(yùn)含的規(guī)律,并順利地求出了前三個(gè)方程的解第①個(gè)方程的解為;第②個(gè)方程的解為;第③個(gè)方程的解為.若n為正整數(shù),且關(guān)于x的方程的一個(gè)解是,則n的值等于____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.以AB為直徑的⊙O分別與BC、AC相交于點(diǎn)D、E,連接AD.過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為4,∠CDF=22.5°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了改造小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻的最大可使用長度12m)的空地上建造一個(gè)矩形綠化帶.除靠墻一邊(AD)外,用長為32m的柵欄圍成矩形ABCD.設(shè)綠化帶寬AB為xm,面積為Sm2,
(1)求S與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(2)綠化帶的面積能達(dá)到128m2嗎?若能,請(qǐng)求出AB的長度;若不能,請(qǐng)說明理由;
(3)當(dāng)x為何值時(shí),滿足條件的綠化帶面積最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)開展寒假爭(zhēng)星活動(dòng),學(xué)生可以從“自理星”、“讀書星”、“健康星”、“孝敬星”等中選一個(gè)項(xiàng)目參加爭(zhēng)星競(jìng)選,根據(jù)該校一年級(jí)某班學(xué)生的“爭(zhēng)星”報(bào)名情況,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答下列問題:
(1)參加調(diào)查的學(xué)生共有 人.
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“讀書星”對(duì)應(yīng)的扇形圓心角度數(shù);
(4)根據(jù)調(diào)查結(jié)果,試估計(jì)該小學(xué)全校3600名學(xué)生中爭(zhēng)當(dāng)“健康星”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與y軸交于點(diǎn)C,與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),過點(diǎn)B作BE⊥x軸于點(diǎn)E,已知A點(diǎn)坐標(biāo)是(2,4),BE=2.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)連接OA、OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少( )個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點(diǎn)P在線段AB的延長線上,求證:EA=EC;
(2)若點(diǎn)P在線段AB上,如圖2,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說明理由;
(3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點(diǎn)B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過程中△ACE面積的最小值為4,請(qǐng)直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.寫出點(diǎn)M′的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com