(2004•鄭州)如圖,∠BAC=90°,AC=AB,直線(xiàn)l與以AB為直徑的圓相切于點(diǎn)B,點(diǎn)E是圓上異于A、B的任意一點(diǎn).直線(xiàn)AE與l相交于點(diǎn)D.
(1)如果AD=10,BD=6,求DE的長(zhǎng);
(2)連接CE,過(guò)E作CE的垂線(xiàn)交直線(xiàn)AB于F.當(dāng)點(diǎn)E在什么位置時(shí),相應(yīng)的F位于線(xiàn)段AB上、位于BA的延長(zhǎng)線(xiàn)上、位于AB的延長(zhǎng)線(xiàn)上(寫(xiě)出結(jié)果,不要求證明).無(wú)論點(diǎn)E如何變化,總有BD=BF.請(qǐng)你就上述三種情況任選一種說(shuō)明理由.

【答案】分析:(1)由于DB是圓的切線(xiàn),因此根據(jù)切割線(xiàn)定理得出的DB2=DE•DA即可求出DE的長(zhǎng);
(2)①設(shè)M是上半圓的中點(diǎn),連接BC,AM,由于AB=AC,且∠CAB=90°,BC必過(guò)M點(diǎn),連接AM則AM⊥BC,因此當(dāng)E在BM弧上時(shí),F(xiàn)在直徑AB上.當(dāng)E在AM弧上時(shí),F(xiàn)在BA的延長(zhǎng)線(xiàn)上.當(dāng)E在下半圓時(shí),F(xiàn)在AB的延長(zhǎng)線(xiàn)上.
②本題可通過(guò)相似三角形來(lái)求解,由于∠CEA和∠FEB同是∠AEF的余角,因此這兩角相等,根據(jù)弦切角定理可知:∠CAE=∠B,由此可得出,△CAE∽△FBE,同理可得出Rt△DBE∽R(shí)t△BAE,那么,已知AC=AB,因此BD=BF.
解答:解:如圖
(1)∵BD是切線(xiàn),DA是割線(xiàn)BD=6,AD=10
∴DB2=DE•DA
∴DE==3.6;

(2)設(shè)M是上半圓的中點(diǎn),當(dāng)E在BM弧上時(shí),F(xiàn)在直徑AB上
當(dāng)E在AM弧上時(shí),F(xiàn)在BA的延長(zhǎng)線(xiàn)上,當(dāng)E在下半圓時(shí),F(xiàn)在AB的延長(zhǎng)線(xiàn)上
連接BE
∵AB是直徑,AC、BD是切線(xiàn),∠CEF=90°
∴∠AEB=90°,∠CAE=∠FBE,∠DBE=∠BAE
∵∠CEA=90°-∠AEF
∠FEB=90°-∠AEF
∴∠CEA=∠FEB
∴Rt△DBE∽R(shí)t△BAE,△CAE∽△FBE
,
∵AC=AB
∴BD=BF.
點(diǎn)評(píng):本題主要考查了切線(xiàn)的性質(zhì)、切割線(xiàn)定理、圓周角定理、相似三角形的判定和性質(zhì)等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2004•鄭州)如圖,函數(shù)圖象①、②、③的表達(dá)式應(yīng)為( )

A.,y=x+2,
B.,y=-x+2,
C.,y=x-2,
D.,y=x-2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2004•鄭州)如圖,函數(shù)圖象①、②、③的表達(dá)式應(yīng)為( )

A.,y=x+2,
B.,y=-x+2,
C.,y=x-2,
D.,y=x-2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•鄭州)如圖,邊長(zhǎng)為2的正方形ABCD中,頂點(diǎn)A的坐標(biāo)是(0,2),一次函數(shù)y=x+t的圖象l隨t的不同取值變化時(shí),位于l的右下方由l和正方形的邊圍成的圖形面積為S(陰影部分).
(1)當(dāng)t何值時(shí),S=3;
(2)在平面直角坐標(biāo)系下,畫(huà)出S與t的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年河南省鄭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•鄭州)如圖,邊長(zhǎng)為2的正方形ABCD中,頂點(diǎn)A的坐標(biāo)是(0,2),一次函數(shù)y=x+t的圖象l隨t的不同取值變化時(shí),位于l的右下方由l和正方形的邊圍成的圖形面積為S(陰影部分).
(1)當(dāng)t何值時(shí),S=3;
(2)在平面直角坐標(biāo)系下,畫(huà)出S與t的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年河南省鄭州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•鄭州)如圖,函數(shù)圖象①、②、③的表達(dá)式應(yīng)為( )

A.,y=x+2,
B.,y=-x+2,
C.,y=x-2,
D.,y=x-2,

查看答案和解析>>

同步練習(xí)冊(cè)答案