【題目】如圖,在正方形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC的延長線上,連結(jié)EF與邊CD相交于點(diǎn)G,連結(jié)BE與對(duì)角線AC相交于點(diǎn)H,AE=CF,BE=EG.
(1)求證:EF∥AC;
(2)求∠BEF大;
【答案】(1)、證明過程見解析;(2)、60°.
【解析】試題分析:(1)、根據(jù)正方形的性質(zhì)得出AD∥BF,結(jié)合AE=CF可得四邊形ACFE是平行四邊形,從而得出EF∥AC;(2)、連接BG,根據(jù)EF∥AC可得∠F=∠ACB=45°,根據(jù)∠GCF=90°可得∠CGF=∠F=45°可得CG=CF,根據(jù)AE=CF可得AE=CG,從而得出△BAE≌△BCG,即BE=EG,得出△BEG為等邊三角形,得出∠BEF的度數(shù).
試題解析:(1)、∵四邊形ABCD是正方形 ∴AD∥BF ∵AE="CF" ∴四邊形ACFE是平行四邊形 ∴EF∥AC
(2)、連接BG ∵EF∥AC, ∴∠F=∠ACB=45°, ∵∠GCF=90°, ∴∠CGF=∠F=45°, ∴CG=CF,
∵AE=CF, ∴AE=CG, ∴△BAE≌△BCG(SAS) ∴BE=BG, ∵BE=EG, ∴△BEG是等邊三角形,
∴∠BEF=60°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圓錐的主視圖是邊長為4 cm的等邊三角形,則該圓錐俯視圖的面積是( )
A. 4cm2 B. 8 cm2 C. 12 cm2 D. 16 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與在平面直角坐標(biāo)系中的位置如圖.
⑴分別寫出下列各點(diǎn)的坐標(biāo): ; ; ;
⑵說明由經(jīng)過怎樣的平移得到? .
⑶若點(diǎn)(,)是內(nèi)部一點(diǎn),則平移后內(nèi)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為 ;
⑷求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC和等邊△ADE中,AB=2,AD=2,連CE,BE,當(dāng)∠AEC=150°時(shí),則BE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b互為倒數(shù),c,d互為相反數(shù),|y|=1且數(shù)y表示在數(shù)軸上在原點(diǎn)的右邊,
求:2017(ab)2-2017(c+d)-5y的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com