【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( )
A.6
B.4
C.3
D.3
【答案】A
【解析】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠CAB=30°,故AB=4,
∵△A′B′C由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,
∴AB=A′B′=4,AC=A′C,
∴∠CAA′=∠A′=30°,
∴∠ACB′=∠B′AC=30°,
∴AB′=B′C=2,
∴AA′=2+4=6.
故答案為:A.
根據(jù)含30角的直角三角形的邊角關(guān)系得出AB的長,由旋轉(zhuǎn)的性質(zhì)得AB=A′B′=4,AC=A′C,根據(jù)等邊對等角得出∠CAA′=∠A′=30°,進(jìn)而得出∠ACB′=∠B′AC=30°,,根據(jù)等角對等邊得出AB′=B′C=2,,從而得出AA的長。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個(gè)工廠都想加工這批產(chǎn)品,已知甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費(fèi)用為每天 80 元,乙工廠加工費(fèi)用為每天 120 元.
(1)甲、乙兩個(gè)工廠每天各能加工多少件新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個(gè)廠家單獨(dú)完成,也可以由兩個(gè)廠家合作完成.在加工過程中,公司派一名工程師每天到廠進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天 15 元的午餐補(bǔ)助費(fèi), 請你幫公司選擇一種既省時(shí)又省錢的加工方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的頂點(diǎn)A在△ECD的斜邊DE上,
求證:AE2+AD2=2AC2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
我們經(jīng)常通過認(rèn)識一個(gè)事物的局部或其特殊類型,來逐步認(rèn)識這個(gè)事物;比如我們通過學(xué)習(xí)特殊的四邊形,即平行四邊形(繼續(xù)學(xué)習(xí)它們的特殊類型如矩形、菱形等)來逐步認(rèn)識四邊形;
我們對課本里特殊四邊形的學(xué)習(xí),一般先學(xué)習(xí)圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過解決簡單的問題鞏固所學(xué)知識;
請解決以下問題:
如圖,我們把滿足AB=AD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫出箏形的兩個(gè)性質(zhì)(定義除外);
(2)寫出箏形的兩個(gè)判定方法(定義除外),并選出一個(gè)進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年4月份的尼泊爾強(qiáng)震曾經(jīng)導(dǎo)致珠峰雪崩,在珠峰搶險(xiǎn)時(shí),需8組登山隊(duì)員步行運(yùn)送物資,要求每組分配的人數(shù)相同,若按每組人數(shù)比預(yù)定人數(shù)多分配1人,則總數(shù)會(huì)超過100人;若按每組人數(shù)比預(yù)定人數(shù)少分配1人,則總數(shù)不夠90人,那么預(yù)定每組分配的人數(shù)是( )
A. 10 B. 11 C. 12 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中, A、B兩點(diǎn)分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點(diǎn)A、B的坐標(biāo);(2)、已知點(diǎn)C(-2,2),求△BOC的面積;(3)、點(diǎn)P是第一象限角平分線上一點(diǎn),若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,在的外部作等邊三角形,為的中點(diǎn),連接并延長交于點(diǎn),連接.
(1)如圖1,若,求的度數(shù);
(2)如圖2,的平分線交于點(diǎn),交于點(diǎn),連接.
①補(bǔ)全圖2;
②若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD平分∠BAC,要使△ABD≌△ACD,
(1)根據(jù)“SAS”需添加條件________;
(2)根據(jù)“ASA”需添加條件________;
(3)根據(jù)“AAS”需添加條件________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com