【題目】△ABC中,AB=AC,取BC的中點(diǎn)D,做DE⊥AC與點(diǎn)E,取DE的中點(diǎn)F,連接BE,AF交于點(diǎn)H.
(1)如圖1,如果∠BAC=90°,那么∠AHB= °,= ;
(2)如圖2,如果∠BAC=60°,猜想∠AHB的度數(shù)和的值,并證明你的結(jié)論;
(3)如果∠BAC=α,那么= .(用含α表達(dá)式表示)
【答案】(1)90;;(2)90;
【解析】
試題分析:連接AD,根據(jù)等腰三角形的性質(zhì)可得∠ABC=∠C,∠BAD=∠BAC,AD⊥BC,然后根據(jù)同角的余角相等可得∠ADE=∠C.易證△ADB∽△DEC,可得ADCE=BDDE.由此可得ADCE=BC2DF=BCDF,即,由此可證到△AFD∽△BEC,則有.在Rt△ADB中根據(jù)三角函數(shù)的定義可得tan∠ABD=tan(90°-∠BAC)=,從而可得=tan(90°-∠BAC).由△AFD∽△BEC可得∠DAF=∠CBE,即可得到∠DAF+∠AOH=∠CBE+∠BOD=90°,即可得到∠AHB=90°.利用以上結(jié)論即可解決題中的三個(gè)問題.
試題解析:連接AD,
∵AB=AC,點(diǎn)D是BC的中點(diǎn),
∴∠ABC=∠C,∠BAD=∠DAC=∠BAC,AD⊥BC,
∵AD⊥BC,DE⊥AC,
∴∠ADE+∠CDE=90°,∠C+∠CDE=90°,
∴∠ADE=∠C.
又∵∠ADB=∠DEC=90°,
∴△ADB∽△DEC,
∴,即AD·CE=BD·DE.
∵點(diǎn)D是BC的中點(diǎn),點(diǎn)F是DE的中點(diǎn),
∴BD=BC,DE=2DF,
∴ADCE═BC2DF=BCDF,
∴,
又∵∠ADE=∠C,
∴△AFD∽△BEC,
∴.
在Rt△ADB中,
∵∠ABD=90°-∠BAD=90°-∠BAC,BD=BC,
∴tan∠ABD=tan(90°-∠BAC)=,
∴tan(90°-∠BAC).
∵△AFD∽△BEC,∴∠DAF=∠CBE.
∵∠CBE+∠BOD=90°,∠AOH=∠BOD,
∴∠DAF+∠AOH=∠CBE+∠BOD=90°,
∴∠AHO=180°-90°=90°,即∠AHB=90°.
(1)如圖1,
根據(jù)以上結(jié)論可得:
∠AHB=90°,=tan(90°-×90°)=.
(2)如圖2,
猜想:∠AHB=90°,.
證明:根據(jù)以上結(jié)論可得:
∠AHB=90°,=tan(90°-×60°)=.
(3)如圖3,
根據(jù)以上結(jié)論可得:
=tan(90°-α).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)(-1,2)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)坐標(biāo)是( 。
A. (-1,-2)B. (1,-2)C. (1,2)D. (2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若分解因式2x2+mx+15=(x-5)(2x-3),則( )
A. m=-7 B. m=7 C. m=-13 D. m=13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店去年8月底購進(jìn)了一批文具1160件,預(yù)計(jì)在9月份進(jìn)行試銷.購進(jìn)價(jià)格為每件10元.若售價(jià)為12元/件,則可全部售出.若每漲價(jià)0.1元.銷售量就減少2件.
(1)求該文具店在9月份銷售量不低于1100件,則售價(jià)應(yīng)不高于多少元?
(2)由于銷量好,10月份該文具進(jìn)價(jià)比8月底的進(jìn)價(jià)每件增加20%,該店主增加了進(jìn)貨量,并加強(qiáng)了宣傳力度,結(jié)果10月份的銷售量比9月份在(1)的條件下的最低銷售量增加了m%,但售價(jià)比9月份在(1)的條件下的最高售價(jià)減少m%.結(jié)果10月份利潤達(dá)到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列幾何圖形中,繞其對(duì)稱中心點(diǎn)旋轉(zhuǎn)任意角度后,所得到的圖形都和原圖形重合,這個(gè)圖形是( )
A. 正方形 B. 正六邊形 C. 五角星 D. 圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為( )
(1)a=b,∠A=45°
(2)∠A=32°,∠B=58°
(3)a=5,b=12,c=13
A. 1個(gè)B. 2個(gè)C. 3D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com