【題目】已知拋物線y=x2+bx+c,經(jīng)過(guò)點(diǎn)B(﹣4,0)和點(diǎn)A(1,0),與y軸交于點(diǎn)C.
(1)確定拋物線的表達(dá)式,并求出C點(diǎn)坐標(biāo);
(2)如圖1,拋物線上存在一點(diǎn)E,使△ACE是以AC為直角邊的直角三角形,求出所有滿足條件的點(diǎn)E坐標(biāo);
(3)如圖2,M,N是拋物線上的兩動(dòng)點(diǎn)(點(diǎn)M在點(diǎn)的N左側(cè)),分別過(guò)點(diǎn)M,N作PM∥x軸,PN∥y軸,PM,PN交于點(diǎn)P.點(diǎn)M,N運(yùn)動(dòng)時(shí),始終保持MN=不變,當(dāng)△MNP的兩條直角邊長(zhǎng)成二倍關(guān)系時(shí),請(qǐng)直接寫(xiě)出直線MN的表達(dá)式.
【答案】(1)y=x2+3x﹣4,C(0,﹣4);(2)E(﹣,﹣)或E(﹣,);(3)MN的解析式為或.
【解析】
(1)將點(diǎn)B(﹣4,0)和點(diǎn)A(1,0)代入函數(shù)解析式即可求解;
(2)分兩種情況:當(dāng)CE⊥AC時(shí),設(shè)CE的解析式為y=kx﹣4,求出E的坐標(biāo)(k﹣3,k2﹣3k﹣4),再由勾股定理可求k的值;⊥AC時(shí),則∥CE,設(shè)的解析式為y=-x+m,即可求出點(diǎn)坐標(biāo);
(3)分兩種情況:設(shè)P(s,t),當(dāng)AP=2MP時(shí),M(s﹣1,t),N(s,t+2),可得(s﹣1)2+3(s﹣1)﹣4=t,s2+3s﹣4=t+2,求出s=0,t=﹣,進(jìn)而求出M(﹣1,﹣6),N(0,﹣4),利用待定系數(shù)法即可求MN的直線解析式;當(dāng)MP=2AP時(shí),M(s﹣2,t),N(s,t+1),可得(s﹣2)2+3(s﹣2)﹣4=t,s2+3s﹣4=t+1,求出s=﹣,t=﹣,進(jìn)而求出M(﹣,﹣),N(﹣,﹣),利用待定系數(shù)法即可求MN的解析式.
(1)∵點(diǎn)B(﹣4,0)和點(diǎn)A(1,0)在拋物線上,
∴,
解得,
∴,
∴點(diǎn)C的坐標(biāo)為(0,﹣4);
(2)當(dāng)CE⊥AC時(shí),
設(shè)CE的解析式為y=kx﹣4,
∴,
得:,
∴x=0(舍)或x=k﹣3,
∴點(diǎn)E的坐標(biāo)為(k﹣3,k2﹣3k﹣4),
AC2==17,
EA2=(k﹣3-1)2+(k2﹣3k﹣4)2,EC2=(k﹣3)2+(k2﹣3k-4+4)2,
∵AC2+EC2=EA2,
∴17+(k﹣3)2+(k2﹣3k)2=(k﹣4)2+(k2﹣3k﹣4)2,
解得:k=3(舍去),k=-,
∴點(diǎn)E的坐標(biāo)為(﹣,﹣);
當(dāng)⊥AC時(shí),
∵CE⊥AC,
∴∥CE,
設(shè)的解析式為y=-x+m,
點(diǎn)A(1,0)在直線上,
∴,
∴,
解得:x=1(舍去)或x,
∴,
∴點(diǎn)的坐標(biāo)為(﹣,);
綜上,點(diǎn)E的坐標(biāo)為(﹣,﹣)或(﹣,);
(3)設(shè)P(s,t),
當(dāng)NP=2MP時(shí),
∵MN=,且,
∴MP=1,NP=2,
∴M(s﹣1,t),N(s,t+2),
∵M、N在拋物線上,
∴(s﹣1)2+3(s﹣1)﹣4=t,s2+3s﹣4=t+2,
解得:s=0,t=﹣,
∴M(﹣1,﹣6),N(0,﹣4),
設(shè)直線MN的解析式為,
則,
解得:,
∴直線MN的解析式為y=2x﹣4;
當(dāng)MP=2AP時(shí),
∵MN=,
同理:MP=2,AP=1,
∴M(s﹣2,t),N(s,t+1),
∵M、N在拋物線上,
∴(s﹣2)2+3(s﹣2)﹣4=t,s2+3s﹣4=t+1,
∴s=﹣,t=﹣,
∴M(﹣,﹣),N(﹣,﹣),
設(shè)直線MN的解析式為,
則,
解得:,
∴直線MN的解析式為y=x;
綜上所述:MN的解析式為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(-1,0);⑤當(dāng)1<x<4時(shí),有y2<y1,其中正確的是()
A.①④⑤B.①③④⑤C.①③⑤D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展以“我最喜歡的職業(yè)”為主題的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求出扇形統(tǒng)計(jì)圖中,公務(wù)員部分對(duì)應(yīng)的圓心角的度數(shù);
(3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息, 分鐘時(shí)甲乙兩人相遇,甲的速度為 米/分鐘;
(2)求出線段所表示的函數(shù)表達(dá)式;
(3)當(dāng)甲,乙相距1000米時(shí),直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展“綠化家鄉(xiāng)、植樹(shù)造林”活動(dòng),為了解全校植樹(shù)情況,對(duì)該校甲、乙、丙、
丁四個(gè)班級(jí)植樹(shù)情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:
(1)這四個(gè)班共植樹(shù) 棵;
(2)請(qǐng)你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)求圖1中“甲”班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)若四個(gè)班級(jí)植樹(shù)的平均成活率是95%,全校共植樹(shù)2000棵,請(qǐng)你估計(jì)全校種植的樹(shù)中成活的樹(shù)有多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線與x軸交于兩個(gè)不同的點(diǎn)A(-1,0)、B(m,0),與y軸交于點(diǎn)C.且∠ACB=90°.
(1)求m的值和拋物線的解析式;
(2)已知點(diǎn)D(1,n )在拋物線上,過(guò)點(diǎn)A的直線交拋物線于另一點(diǎn)E.若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為 ;
(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由;
問(wèn)題解決
(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對(duì)角線AC的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=ax2﹣2ax﹣3a(a>0)圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求點(diǎn)A,B的坐標(biāo);
(2)若M為對(duì)稱軸與x軸交點(diǎn),且DM=2AM.
①求二次函數(shù)解析式;
②當(dāng)t﹣2≤x≤t時(shí),二次函數(shù)有最大值5,求t值;
③若直線x=4與此拋物線交于點(diǎn)E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點(diǎn)),將圖象P沿直線x=4翻折,得到圖象Q,又過(guò)點(diǎn)(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B均為格點(diǎn).
(Ⅰ)AB的長(zhǎng)等于_____.
(Ⅱ)若點(diǎn)C是以AB為底邊的等腰直角三角形的頂點(diǎn),點(diǎn)D在邊AC上,且滿足S△ABD=S△ABC.請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線段BD,并簡(jiǎn)要說(shuō)明點(diǎn)D的位置是如何找到的(不要求證明)______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com