【題目】如圖,是等腰三角形,,點(diǎn)上一點(diǎn),過(guò)點(diǎn)于點(diǎn),交延長(zhǎng)線(xiàn)于點(diǎn)

1)證明:是等腰三角形;

2)若,,求的長(zhǎng).

【答案】1)見(jiàn)詳解 24

【解析】

1AB=AC,可知∠B=C,再由DEBC,可知∠F+C=90°,∠BDE+B=90,然后余角的性質(zhì)可推出∠F=BDE,再根據(jù)對(duì)頂角相等進(jìn)行等量代換即可推出∠F=FDA,于是得到結(jié)論;
2根據(jù)解直角三角形和等邊三角形的性質(zhì)即可得到結(jié)論.

證明:(1)∵AB=AC

∴∠B=C,

FEBC

∴∠F+C=90°,∠BDE+B=90°,

∴∠F=BDE

又∵∠BDE=FDA,

∴∠F=FDA,

AF=AD

∴△ADF是等腰三角形;

2)∵DEBC,

∴∠DEB=90°,

∵∠B=60°,BD=4

BE=BD=2

AB=AC

∴△ABC是等邊三角形,

BC=AB=AD+BD=6,

EC=BC-BE=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校3月份開(kāi)展網(wǎng)絡(luò)授課教學(xué),該校隨機(jī)抽取部分學(xué)生,按四個(gè)類(lèi)別(A、很喜歡;B、喜歡;C、一般;D、不喜歡;)統(tǒng)計(jì)它們對(duì)網(wǎng)絡(luò)授課的接受情況,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:

1)這次共抽取_________名學(xué)生進(jìn)行統(tǒng)計(jì)調(diào)查;扇形統(tǒng)計(jì)圖中,D類(lèi)所對(duì)應(yīng)的扇形圓心角的大小為_______;

2)將條形圖補(bǔ)充完整;

3)該校共有1500名學(xué)生,估計(jì)該校表示喜歡網(wǎng)絡(luò)授課的B類(lèi)的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)yk≠0x0)的圖象同時(shí)經(jīng)過(guò)頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE3DE

1)求出k值.

2)求出OCD的面積

3)試探究坐標(biāo)軸上是否存在點(diǎn)P,使得PCD的面積等于菱形ABCD的面積的一半,如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)2019年莆田市初中畢業(yè)升學(xué)體育考試內(nèi)容要求,甲、乙、丙在某節(jié)體育課他們各自隨機(jī)分別到籃球場(chǎng)A處進(jìn)行籃球運(yùn)球繞桿往返訓(xùn)練或到足球場(chǎng)B處進(jìn)行足球運(yùn)球繞桿訓(xùn)練,三名學(xué)生隨機(jī)選擇其中的一場(chǎng)地進(jìn)行訓(xùn)練.

1)用列表法或樹(shù)形圖表示出的所用可能出現(xiàn)的結(jié)果;

2)求甲、乙、丙三名學(xué)生在同一場(chǎng)地進(jìn)行訓(xùn)練的概率;

3)求甲、乙、丙三名學(xué)生中至少有兩人在B處場(chǎng)地進(jìn)行訓(xùn)練的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,則下列4個(gè)結(jié)論:①abc0;②2a+b0;③4a+2b+c0;④b24ac0;其中正確的結(jié)論的個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),對(duì)稱(chēng)軸為直線(xiàn),,下列結(jié)論:①;②9a+3b+c=0;③若點(diǎn),點(diǎn)是此函數(shù)圖象上的兩點(diǎn),則;④.其中正確的個(gè)數(shù)(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在中,為射線(xiàn)上一點(diǎn),連接于點(diǎn).

1)如圖1,若點(diǎn)與點(diǎn)重合,且,求的長(zhǎng);

2)如圖2,當(dāng)點(diǎn)邊上時(shí),過(guò)點(diǎn),延長(zhǎng),連接.求證:

3)如圖3,當(dāng)點(diǎn)在射線(xiàn)上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)的中點(diǎn),點(diǎn)邊上且,已知,請(qǐng)直接寫(xiě)出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向上,圖象經(jīng)過(guò)點(diǎn)(1,2)(1,0),且與y軸相交于負(fù)半軸,給出五個(gè)結(jié)論:①a+b+c=0,②abc0,③2a+b0,④a+c=1,⑤當(dāng)﹣1x1時(shí),y0;其中正確的結(jié)論的序號(hào)(  )

A.①③⑤B.②③④C.①③④D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,AEBC,CFAD,EF分別為垂足.

1)求證:△ABE≌△CDF;

2)求證:四邊形AECF是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案