觀察下列等式:

以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對(duì)稱等式”.
根據(jù)上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對(duì)稱等式”:
(1)① 52×             ×25;
       ×396=693×      .
(2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為,個(gè)位數(shù)字為,且2≤≤9,寫出表示“數(shù)字對(duì)稱等式”一般規(guī)律的式子(含),并證明.
解:(1)①∵5+2=7,
∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,
∴52×275=572×25,
②∵左邊的三位數(shù)是396,
∴左邊的兩位數(shù)是63,右邊的兩位數(shù)是36,
63×369=693×36;
故答案為:①275,572;②63,36.
(2)∵左邊兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,
∴左邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a,
右邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b,
∴一般規(guī)律的式子為:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
證明:左邊=(10a+b)×[100b+10(a+b)+a],
=(10a+b)(100b+10a+10b+a),
=(10a+b)(110b+11a),
=11(10a+b)(10b+a),
右邊=[100a+10(a+b)+b]×(10b+a),
=(100a+10a+10b+b)(10b+a),
=(110a+11b)(10b+a),
=11(10a+b)(10b+a),
左邊=右邊,
所以“數(shù)字對(duì)稱等式”一般規(guī)律的式子為:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).
(1)觀察規(guī)律,左邊,兩位數(shù)所乘的數(shù)是這個(gè)兩位數(shù)的個(gè)位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭(gè)位數(shù)字,兩個(gè)數(shù)字的和放在十位;右邊,三位數(shù)與左邊的三位數(shù)字百位與個(gè)位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個(gè)位數(shù)字交換然后相乘,根據(jù)此規(guī)律進(jìn)行填空即可;
(2)按照(1)中對(duì)稱等式的方法寫出,然后利用多項(xiàng)式的乘法進(jìn)行證明即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

計(jì)算
①  
②  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,則,之間的關(guān)系式是            。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,
(1)求a的取值范圍;
(2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是同類項(xiàng),則、的取值為                    
A.m=2,n=3B.m=4,n=2C.m=3,n=3D.m=4,n=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

分解因式 _______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知被除式是,商式是,余式是,則除式是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

分解因式:=___.

查看答案和解析>>

同步練習(xí)冊(cè)答案