【題目】如圖,在△ABC中,點(diǎn)O是AC邊上一動(dòng)點(diǎn),過點(diǎn)O作BC的平行線交∠ACB的角平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形CEAF是矩形?請證明你的結(jié)論。
(3)在第(2)問的結(jié)論下,若AE=3,EC=4,AB=12,BC=13,請求出凹四邊形ABCE的面積.
【答案】(1)證明見解析(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形CEAF是矩形(3)24
【解析】
(1)根據(jù)平行線的性質(zhì)與等腰三角形的性質(zhì)即可證明;(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形CEAF是矩形,由直角三角形斜邊上的中線是斜邊的一半即可證明;(3)利用凹四邊形ABCE的面積=△ABC的面積△ACE的面積即可求解.
(1)證明:∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形CEAF是矩形;理由如下:
由(1)得:EO=FO,
又∵O是AC的中點(diǎn),
∴AO=CO,
∴四邊形CEAF是平行四邊形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四邊形CEAF是矩形;
(3)由(2)得:四邊形CEAF是矩形,
∴∠AEC=90,
∴AC=AE2+EC2=5,
△ACE的面積=AE×EC=×3×4=6,
∵122+52=132,
即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90,
∴△ABC的面積=ABAC=×12×5=30,
∴凹四邊形ABCE的面積=△ABC的面積△ACE的面積=306=24;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為,點(diǎn)B在數(shù)軸上對應(yīng)的數(shù)為b,且,b滿足
(1)求線段AB的長;
(2)點(diǎn)C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程的解,在數(shù)軸上是否存在點(diǎn)P,使得PA+PB=PC?若存在,求出點(diǎn)P對應(yīng)的數(shù);若不存在,說明理由;
(3)在(1)(2)條件下,點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒4個(gè)單位長度和9個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,請問:AB﹣BC的值是否隨時(shí)間t的變化而改變?若變化,請說明理由;若不變,請求其常數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在圓上,BC,AD分別與該圓相交于點(diǎn)E,F(xiàn),G是弧AF的三等分點(diǎn)(弧AG>弧GF),BG交AF于點(diǎn)H.若弧AB的度數(shù)為30°,則∠GHF等于( )
A. 40° B. 45° C. 55° D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了盡快的適應(yīng)中招體考項(xiàng)目,現(xiàn)某校初二(1)班班委會(huì)準(zhǔn)備籌集1800元購買A、B兩種類型跳繩供班級(jí)集體使用.
(1)班委會(huì)決定,購買A種跳繩的資金不少于B種跳繩資金的2倍,問最多用多少資金購買B種跳繩?
(2)經(jīng)初步統(tǒng)計(jì),初二(1)班有25人自愿參與購買,那么平均每生需交72元.初三(1)班了解情況后,把體考后閑置的跳繩贈(zèng)送了若干給初二(1)班,這樣只需班級(jí)共籌集1350元.經(jīng)初二(1)班班委會(huì)進(jìn)一步宣傳,自愿參與購買的學(xué)生在25人的基礎(chǔ)上增加了4a%.則每生平均交費(fèi)在72元基礎(chǔ)上減少了2.5a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是偉大的數(shù)學(xué)家歐拉親自編的一道題:父親臨終時(shí)立下遺囑,按下述方式分配遺產(chǎn),老大分得100克朗和剩下的十分之一,老二分得200克朗和剩下的十分之一,老三分得300克朗和剩下的十分之一,老四分得400克朗和剩下的十分之一,… …,依次類推分給其余的孩子,最后發(fā)現(xiàn)遺產(chǎn)全部分完后所有孩子分得的遺產(chǎn)相等,遺產(chǎn)總數(shù)、孩子人數(shù)和每個(gè)孩子分得的遺產(chǎn)各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,點(diǎn)是線段上一動(dòng)點(diǎn), 為的中點(diǎn), 的延長線交BC于.
(1)求證: ;
(2)若,,從點(diǎn)出發(fā),以l的速度向運(yùn)動(dòng)(不與重合).設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為,請用表示的長;并求為何值時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.
(1)求拋物線的函數(shù)表達(dá)式.
(2)當(dāng)t為何值時(shí),矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)對隊(duì)員進(jìn)行定點(diǎn)投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊(duì)員在五天中進(jìn)球數(shù)(單位:個(gè))進(jìn)行統(tǒng)計(jì),結(jié)果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
經(jīng)過計(jì)算,甲進(jìn)球的平均數(shù)為8,方差為3.2.
(1)求乙進(jìn)球的平均數(shù)和方差;
(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊(duì)員中選出一人去參加定點(diǎn)投籃比賽,應(yīng)選誰?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校以“我最想去的社會(huì)實(shí)踐地”為課題,開展了一次調(diào)查,從全校同學(xué)中隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,每位同學(xué)從“蓀湖花海”、“保國寺”、“慈城古鎮(zhèn)”、“綠色學(xué)校”中選取一項(xiàng)最想去的社會(huì)實(shí)踐地,并將調(diào)查結(jié)果繪制成如下的統(tǒng)計(jì)圖(部分信息未給出).
請根據(jù)統(tǒng)計(jì)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為________,a=________%,b=________%,“蓀湖花海”所對應(yīng)扇形的圓心角度數(shù)為________度.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有1600名學(xué)生,請估計(jì)全校最想去“綠色學(xué)校”的學(xué)生共有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com