【題目】如圖,AB是⊙O的直徑,PA切⊙O于A,OP交⊙O于C,連接BC.
(Ⅰ)如圖①,若∠P=20°,求∠BCO的度數(shù);
(Ⅱ)如圖②,過A作弦AD⊥OP于E,連接DC,若OE= CD,求∠P的度數(shù).
【答案】(Ⅰ)35°(Ⅱ)30°
【解析】
(1)由PA是⊙O的切線,推出OA⊥AP,推出∠AOC=90°-20°=70°,由∠B= ∠AOC=35°,OB=OC,即可推出∠B=∠OCB=35°;
(2)如圖2中,連接BD、OD.只要證明 = = ,即可推出∠AOC=∠COD=∠BOD=60°,由PA是⊙O的切線,推出∠PAO=90°,推出∠P=30°;
(Ⅰ)如圖1中,
∵PA是⊙O的切線,
∴OA⊥AP,
∴∠PAO=90°,∵∠P=20°,
∴∠AOC=90°﹣20°=70°,
∴∠B= ∠AOC=35°,
∵OB=OC,
∴∠B=∠OCB=35°,
∴∠BCO=35°.
(Ⅱ)如圖2中,連接BD、OD.
∵AD⊥OP于E,
∴AE=ED, = ,
∵AE=ED,OA=OB,
∴OE= DB,
∵OE= CD,
∴CD=DB,
∴ = ,
∴ = = ,
∴∠AOC=∠COD=∠BOD=60°,
∵PA是⊙O的切線,
∴∠PAO=90°,
∴∠P=30°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面各問題中給出的兩個變量x,y,其中y是x的函數(shù)的是
① x是正方形的邊長,y是這個正方形的面積;
② x是矩形的一邊長,y是這個矩形的周長;
③ x是一個正數(shù),y是這個正數(shù)的平方根;
④ x是一個正數(shù),y是這個正數(shù)的算術(shù)平方根.
A. ①②③B. ①②④C. ②④D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線過點,直線:與直線交于點B,與x軸交于點C.
(1)求k的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.
① 當b=4時,直接寫出△OBC內(nèi)的整點個數(shù);
②若△OBC內(nèi)的整點個數(shù)恰有4個,結(jié)合圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是半徑為cm的⊙O外一點,PA,PB分別和⊙O切于點A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一點,過C作⊙O的切線交PA,PB于點D,E.
(1)求△PDE的周長;
(2)若DE=cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校需要添置教師辦公桌椅A、B兩型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)求A,B兩型桌椅的單價;
(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要運費10元.設(shè)購買A型桌椅x套時,總費用為y元,求y與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)求出總費用最少的購置方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D為頂點的四邊形是平行四邊形,則點D的坐標為________________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com