【題目】如圖,在直角三角形△ABC內(nèi)部有一動點P,∠BAC=90°,連接PA,PBPC,若AC=6AB=8,求PA+PB+PC的最小值_____

【答案】

【解析】

如圖,將ACP繞點C順時針旋轉(zhuǎn)60°得到ECF,連接PF,BE,作EHBABA的延長線于H.首先證明PA+PB+PC≥BE,求出BE的值即可解決問題.

如圖,將ACP繞點C順時針旋轉(zhuǎn)60°得到ECF,連接PF,BE,作EHBABA的延長線于H

由旋轉(zhuǎn)的旋轉(zhuǎn)可知:PA=EF,PCF,ACE是等邊三角形,

PF=PC,

PA+PB+PC=EF+FP+PB,

EF+FP+PB≥BE

∴當(dāng)BP,FE共線時,PA+PB+PC的值最小,

∵∠BAC=90°,∠CAE=60°,

∴∠HAE=180°90°60°=30°,

EHAHAE=AC=6,

EH=AE=3AH=EH=3,

BE===

PA+PB+PC的最小值為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,以點M(1,0)為圓心的圓與y軸,x軸分別交于點A,B,C,D,與⊙M相切于點H的直線EFx軸于點E,0),交y軸于點F0).

(1)⊙M的半徑r;

(2)如圖2所示,連接CH,弦HQx軸于點P,若cos∠QHC=,求的值;

(3)如圖3所示,點P⊙M上的一個動點,連接PE,PF,求PF+PE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】縉云山是國家級自然風(fēng)景名勝區(qū),上周周末,小明和媽媽到縉云山游玩,登上了香爐峰觀景塔,從觀景塔底中心處水平向前走米到點處,再沿著坡度為的斜坡走一段距離到達點,此時回望觀景塔,更顯氣勢宏偉,在點觀察到觀景塔頂端的仰角為再往前沿水平方向走米到處,觀察到觀景塔頂端的仰角是,則觀景塔的高度為( )(tan22°≈0.4

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱底面半徑為cm,高為18cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側(cè)面繞3圈到B點,則這根棉線的長度最短為( 。

A.24cmB.30cmC.2cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1kx+nn0)和反比例函數(shù)y2m0,x0).

1)如圖1,若n=﹣2,且函數(shù)y1y2的圖象都經(jīng)過點A3,4).

①求mk的值;

②直接寫出當(dāng)y1y2x的范圍;

2)如圖2,過點P10)作y軸的平行線l與函數(shù)y2的圖象相交于點B,與反比例函數(shù)y3x0)的圖象相交于點C

①若k2,直線l與函數(shù)y1的圖象相交點D.當(dāng)點B、C、D中的一點到另外兩點的距離相等時,求mn的值;

②過點Bx軸的平行線與函數(shù)y1的圖象相交于點E.當(dāng)mn的值取不大于1的任意實數(shù)時,點B、C間的距離與點BE間的距離之和d始終是一個定值.求此時k的值及定值d

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,=nMBC上的一點,連接BM

1)如圖1,若n=1,

①當(dāng)MAC的中點,當(dāng)BMCDH,連接AH,求∠AHD的度數(shù);

②如圖2,當(dāng)HCD的中點,∠AHD=45°,求的值和∠CAH的度數(shù);

2)如圖3,CHAMH,連接CH并延長交ACQ,MAC中點,直接寫出tanBHQ的值(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品店購進A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2A種工藝品和3B種工藝品需花費520元.

1)求A,B兩種工藝品的單價;

2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?

3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若AB兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在畫有方格圖的平面直角坐標(biāo)系中,ABC的三個頂點均在格點上.

(1)將ACB繞點B順時針方向旋轉(zhuǎn),在方格圖中用直尺畫出旋轉(zhuǎn)后對應(yīng)的A1C1B,則A1點的坐標(biāo)是(_________),C1點的坐標(biāo)是(_________.

(2)在方格圖中用直尺畫出△ACB關(guān)于原點O的中心對稱圖形△A2C2B2,則A2點的坐標(biāo)是(_________),C2點的坐標(biāo)是(_________.

查看答案和解析>>

同步練習(xí)冊答案