【題目】厲行節(jié)能減排,倡導綠色出行,某公司擬在我縣甲、乙兩個街道社區(qū)試點投放一批共享單車(俗稱小黃車),這批自行車包括A、B兩種不同款型,投放情況如下表:

成本單價 (單位:元)

投放數(shù)量(單位:輛)

總價(單位:元)

A

50

50

B

50

       

成本合計(單位:元)

7500

1)根據(jù)表格填空:

本次試點投放的A、B小黃車共有   輛;用含有的式子表示出B型自行車的成本總價為   ;

2)試求A、B兩種款型自行車的單價各是多少元?

3)經(jīng)過試點投放調(diào)查,現(xiàn)在該公司決定采取如下方式投放A小黃車:甲街區(qū)每100人投放n輛,乙街區(qū)每100人投放(n+2)輛,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有人,求甲街區(qū)每100人投放A小黃車的數(shù)量.

【答案】1100;50x+10);
270元和80元;

32輛.

【解析】

1)看圖填數(shù)即可;
2)設(shè)A型車的成本單價為x元,則B型車的成本單價為(x+10)元,根據(jù)成本共計7500元,列方程求解即可;
3)根據(jù)兩個街區(qū)共有 人,列出分式方程進行求解并檢驗即可.

解:(1)由圖表表可知,本次試點投放的A、B小黃車共有:50+50=100(輛);
B型自行車的成本總價為:
故答案為:100;50x+10
2)由A型車的成本單價為x元,B型車的成本單價為(x+10)元,

∴總價為,
解得,

A、B兩型自行車的單價分別是70元和80元;

3)依題意,可列得方程:

解得:n=2
經(jīng)檢驗:n=2是所列方程的解,
∴甲街區(qū)每100人投放A小黃車”2輛.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在鈍角△ABC中,∠C=45°,AE⊥BC,垂足為E點,且ABAC的長度為方程x2﹣9x+18=0的兩個根,⊙O△ABC的外接圓.

求:(1)⊙O的半徑;

(2)BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當EFC是直角三角形時,那么BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,正方形和正方形共一頂點,且點.連接并延長交于點

1)請猜想的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

2)若點不在上,其它條件不變,如圖乙.是否還有上述關(guān)系?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分式中,在分子、分母都是整式的情況下,如果分子的次數(shù)低于分母的次數(shù),稱這樣的分式為真分式.例如,分式,是真分式.如果分子的次數(shù)不低于分母的次數(shù),稱這樣的分式為假分式.例如,分式,是假分式.一個假分式可以化為一個整式與一個真分式的和.例如,

1)將假分式化為一個整式與一個真分式的和是   ;

2)將假分式化為一個整式與一個真分式的和;

3)若分式的值為整數(shù),求整數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:如圖1,在四邊形ABCD中,∠ABC=90°,AB=CB=DB,DBAC

直接寫出∠ADC的大;

求證:AB2+BC2=AC2

遷移應用:如圖2,在四邊形ABCD中,∠BAD=60°,AB=BC=CD=DA=2,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE、CF

求證:△CEF是等邊三角形;

若∠BAF=45°,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=6,O是AB的中點,直線l經(jīng)過點O,1=120°,P是直線l上一點。當APB為直角三角形時,AP=

查看答案和解析>>

同步練習冊答案