【題目】在△ABC中,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B、C重合)以AD為邊作正方形ADEF,使∠DAF=∠BAC,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時,求證:BD=CF;
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上,且∠BAC=90°時.
①問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
②延長BA交CF于點(diǎn)G,連接GE,若AB=2 ,CD=BC,請求出GE的長.
【答案】
(1)
證明:菱形ADEF中,AD=AF,
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
在△DAB與△FAC中, ,
∴△DAB≌△FAC(SAS),
∴BD=CF
(2)
解:①(1)中的結(jié)論仍然成立;理由如下:
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF
在△DAB與△FAC中, ,
∴△DAB≌△FAC(SAS),
∴BD=CF;
②過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,如圖所示:
∵∠BAC=90°,AB=AC,
∴BC= AB=4,AH=BH=HC=2,
∴CD=BC=4,
∴DH=6,CF=BD=8,
∵四邊形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四邊形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADE=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
∴∠ADH=∠DEM,
在△ADH與△DEM中, ,
∴△ADH≌△DEM(AAS),
∴EM=DH=6,DM=AH=2,
∴CN=EM=6,EN=CM=6,
∵∠ABC=45°,
∴∠BGC=45°,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=2,
∴GE= = =2 .
【解析】(1)由SAS證明△DAB≌△FAC,得出對應(yīng)邊相等即可;(2)①由SAS證明△DAB≌△FAC,得出對應(yīng)邊相等即可;②過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,證出∠ADH=∠DEM,由AAS證明△ADH≌△DEM,得出EM=DH=6,DM=AH=2,得出CN=EM=6,EN=CM=6,證出△BCG是等腰直角三角形,得出CG=BC=4,求出GN=2,由勾股定理求出GE的長即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,AC,BD是四邊形ABCD的對角線,若∠ACB=∠ACD=∠ABD=∠ADB=60°,則線段BC,CD,AC三者之間有何等量關(guān)系?
經(jīng)過思考,小明展示了一種正確的思路:如圖2,延長CB到E,使BE=CD,連接AE,證得△ABE≌△ADC,從而容易證明△ACE是等邊三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一種正確的思路:如圖3,將△ABC繞著點(diǎn)A逆時針旋轉(zhuǎn)60°,使AB與AD重合,從而容易證明△ACF是等邊三角形,故AC=CF,所以AC=BC+CD.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
(1)小穎提出:如圖4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對小穎提出的問題,請你寫出結(jié)論,并給出證明.
(2)小華提出:如圖5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對小華提出的問題,請你寫出結(jié)論,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B、與y軸交于點(diǎn)A,與反比例函數(shù)y= 的圖象在第二象限交于C,CE⊥x軸,垂足為點(diǎn)E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限內(nèi)的點(diǎn),過點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF.如果S△BAF=4S△DFO , 求點(diǎn)D的坐標(biāo).
(3)若動點(diǎn)D在反比例函數(shù)圖象的第四象限上運(yùn)動,當(dāng)線段DC與線段DB之差達(dá)到最大時,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正比例函數(shù)y1=k1x的圖象與一個一次函數(shù)y2=k2x+b的圖象相交于點(diǎn)A(3,4),且一次函數(shù)y2的圖像與y軸相交于點(diǎn)B(0,—5),與x軸交于點(diǎn)C.
(1)判斷△AOB的形狀并說明理由;
(2)請寫出當(dāng)y1>y2時x的取值范圍;
(3)若將直線AB繞點(diǎn)A旋轉(zhuǎn),使△AOC的面積為8,求旋轉(zhuǎn)后直線AB的函數(shù)解析式;
(4)在x軸上求一點(diǎn)P使△POA為等腰三角形,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于點(diǎn)A(2,0)和點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對稱軸為直線x=﹣1,點(diǎn)E為線段AC的中點(diǎn),點(diǎn)F為x軸上一動點(diǎn).
(1)直接寫出點(diǎn)B的坐標(biāo),并求出拋物線的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)F的橫坐標(biāo)為﹣3時,線段EF上存在點(diǎn)H,使△CDH的周長最小,請求出點(diǎn)H,使△CDH的周長最小,請求出點(diǎn)H的坐標(biāo);
(3)在y軸左側(cè)的拋物線上是否存在點(diǎn)P,使以P,F(xiàn),C,D為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點(diǎn),點(diǎn)P從點(diǎn)A開始沿AB方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始B→C方向運(yùn)動,且速度為每秒2cm,它們同時出發(fā);設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)在運(yùn)動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運(yùn)動時間;若不能夠,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解九年級學(xué)生的體能,從九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試的結(jié)果分為A、B、C、D四個等級,并根據(jù)測試成績繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次抽樣調(diào)查的樣本容量是多少?B等級的有多少人?并補(bǔ)全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,C等級對應(yīng)扇形的圓心角為多少度?
(3)該校九年級學(xué)生有1500人,估計D等級的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有三點(diǎn)A(2,2),B(5,2),C(5,)
(1)請確定一個點(diǎn)D,使四邊形ABCD為長方形,寫出點(diǎn)D的坐.
(2)求這個四邊形的面積(精確到0.01).
(3)將這個四邊形向右平移2個單位,再向下平移個單位,求平移后四個頂點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com