【題目】如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過(guò)點(diǎn)D作直線y=﹣x+m交折線OAB于點(diǎn)E

1)請(qǐng)寫出m的取值范圍

2)記ODE的面積為S,求Sm的函數(shù)關(guān)系式.

【答案】11m2.5;(2S

【解析】

1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)D的坐標(biāo),根據(jù)點(diǎn)D橫坐標(biāo)的范圍即可得出m的取值范圍;
2)分點(diǎn)E在線段OA上及點(diǎn)E在線段AB上時(shí)(與端點(diǎn)A、B不重合)兩種情況考慮:①當(dāng)點(diǎn)E在線段OA上時(shí),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo),由點(diǎn)E的橫坐標(biāo)≤3可得出此時(shí)m的取值范圍,再利用三角形的面積公式可找出S關(guān)于m的函數(shù)關(guān)系式;②當(dāng)點(diǎn)E在線段AB上時(shí)(與端點(diǎn)A、B不重合),此時(shí)1.5m2.5,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo),結(jié)合點(diǎn)D、B的坐標(biāo)即可得出CD、AEBD、BE的長(zhǎng)度,再根據(jù)S=S矩形OABC-SOAE-SOCD-SBDE即可找出S關(guān)于m的函數(shù)關(guān)系式.綜上即可得出結(jié)論.

解:(1)當(dāng)y1時(shí),有﹣x+m1,

x2m2

∴點(diǎn)D的坐標(biāo)為(2m2,1).

∵點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)BC不重合),

02m23,

1m2.5

故答案為:1m2.5

2)①當(dāng)點(diǎn)E在線段OA上時(shí),如圖1所示.

當(dāng)y0時(shí),有﹣x+m0,

x2m

∴點(diǎn)E的坐標(biāo)為(2m,0),

2m≤3,

∴此時(shí)1m≤1.5SOE OCm;

②當(dāng)點(diǎn)E在線段AB上時(shí)(與端點(diǎn)A、B不重合),此時(shí)1.5m2.5,如圖2所示.

當(dāng)x3時(shí),y=﹣x+mm1.5

∴點(diǎn)E的坐標(biāo)為(3,m1.5).

∵點(diǎn)D的坐標(biāo)為(2m2,1),點(diǎn)B的坐標(biāo)為(3,1),

CD2m2,BD52mAEm1.5,BE2.5m,

SS矩形OABCSOAESOCDSBDE,

OAOCOAAEOCCDBDBE,

3×1×3m1.5)﹣2m2)﹣52m)(2.5m),

=﹣m2+2.5m

綜上所述:Sm的函數(shù)關(guān)系式為S

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,∠ABC=60°,E是對(duì)角線AC上一點(diǎn),F(xiàn)是線段BC延長(zhǎng)線上一點(diǎn),且CF=AE,連接BE、EF.

(1)若E是線段AC的中點(diǎn),如圖1,易證:BE=EF(不需證明);
(2)若E是線段AC或AC延長(zhǎng)線上的任意一點(diǎn),其它條件不變,如圖2、圖3,線段BE、EF有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù) 的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A(-2,0).

(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點(diǎn)P,使△AOP的面積為3,若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=1,點(diǎn)D、E在直線BC上運(yùn)動(dòng),設(shè)BD=x,CE=y(tǒng).如果∠BAC=30°,∠DAE=105°,則y與x之間的函數(shù)關(guān)系式為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初三年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高 m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?
(2)此時(shí),若對(duì)方隊(duì)員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDABD,點(diǎn)FBC上任意一點(diǎn),FEABE,且∠1=∠2.求證:∠3=ACB

下面給出了部分證明過(guò)程和理由,請(qǐng)補(bǔ)全所有內(nèi)容.

證明:∵CDAB,FEAB

∴∠BDC=BEF=90°

EFDC

∴∠2=

又∵∠2=1(已知)

∴∠1= (等量代換)

DGBC

∴∠3=ACB(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的函數(shù)圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作RtABC,且使∠ABC30°

1)求ABC的面積;

2)如果在第二象限內(nèi)有一點(diǎn)Pm),試用含m的代數(shù)式表示APB的面積,并求當(dāng)APBABC面積相等時(shí)m的值;

3)是否存在使QAB是等腰三角形并且在坐標(biāo)軸上的點(diǎn)Q?若存在,請(qǐng)寫出點(diǎn)Q所有可能的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副三角板直角頂點(diǎn)重合于點(diǎn),,

1)如圖(1),若,求證:;

2)如圖(2),若,, 度;

3)如圖(3),在(1)的條件下,相交于點(diǎn),連接,,若,,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)踐操作:在矩形ABCD中,AB4,AD3,現(xiàn)將紙片折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)記為點(diǎn)P,折痕為EF(點(diǎn)E、F是折痕與矩形的邊的交點(diǎn)),再將紙片還原.

初步思考:

1)若點(diǎn)P落在矩形ABCD的邊AB上(如圖①)

①當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),∠DEF   °;當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),∠DEF   °;

②當(dāng)點(diǎn)EAB上,點(diǎn)FDC上時(shí)(如圖②),

求證:四邊形DEPF為菱形,并直接寫出當(dāng)AP3.5時(shí)的菱形EPFD的邊長(zhǎng).

深入探究

2)若點(diǎn)P落在矩形ABCD的內(nèi)部(如圖③),且點(diǎn)EF分別在AD、DC邊上,請(qǐng)直接寫出AP的最小值   

拓展延伸

3)若點(diǎn)F與點(diǎn)C重合,點(diǎn)EAD上,線段BA與線段FP交于點(diǎn)M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長(zhǎng)度相等?若存在,請(qǐng)直接寫出線段AE的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案