【題目】如圖,在□ABCD中,E,F分別為邊ABCD的中點,連接DE,BF,且AB=2AD=4

1)求證:△AED≌△CFB;

2)當四邊形DEBF為菱形時,求出該菱形的面積;

【答案】1)證明見試題解析;(2

【解析】

試題(1)首先根據(jù)平行四邊形的性質(zhì)可得AD=BC,∠A=∠C,再加上條件AE=CF可利用SAS證明△AED≌△CFB;

2)作FM⊥ABM,可以得到△BFC是等邊三角形,得到∠FBM=60°,再求出菱形的高FM,從而得到菱形的面積.

解答:證明:(1四邊形ABCD是平行四邊形,∴AD=BC,∠A=∠C

△ADE△CBF中,∵AD=BC,∠A=∠CAE=CF,∴△AED≌△CFBSAS);

2)作FM⊥ABM,

在菱形DEBF中,BE=BF=AB=,∵CF=CD=,BC=AD=AB=2∴CF=BC=BF,∴△BFC是等邊三角形,∴∠BFC=60°,∵ABCD是平行四邊形,∴AB∥CD,∴∠MBF=∠BFC=60°,∴∠FBM=30°,∴MB=BF=1,∴FM=MB=,菱形DEBF的面積=BEFM=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C90°,BC16 cm,AC12 cm,點P從點B出發(fā),沿BC2 cm/s的速度向點C移動,點Q從點C出發(fā),以1 cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為ts,當t__________時,CPQCBA相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.

(1)當把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;

(2)當△ADE繞A點旋轉(zhuǎn)到圖3的位置時,△AMN是否還是等邊三角形?若是,請給出證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,拋物線y=a(x2+2x-3)(a≠0)x軸交于點A和點B,與y軸交于點C,且OC=OB.

(1)直接寫出點B的坐標是( , ),并求拋物線的解析式;

(2)設(shè)點D是拋物線的頂點,拋物線的對稱軸是直線l,連接BD,線段OC上的點E關(guān)于直線l的對稱點E'恰好在線段BD上,求點E的坐標;

(3)若點F為拋物線第二象限圖象上的一個動點,連接BF,CF,當△BCF的面積是△ABC面積的一半時,求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用合適的方法解方程:

1)(2t+3232t+3

2)(2x129x22

32x25x1

4x2+4x50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,AB 是⊙O 的直徑,CD 是弦,CDAB 于點 E,點 G 在直徑 DF 的延 長線上,∠D=G=30°

1)求證:CG 是⊙O 的切線;

2)若 CD=6,求 GF 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示的一張矩形紙片ABCDADAB),將紙片折疊一次,使點AC重合,再展開,折痕EFAD邊于E,交BC邊于F,分別連結(jié)AFCE

1)求證:四邊形AFCE是菱形;

2)若AE13cm,△ABF的周長為30cm,求△ABF的面積;

3)在線段AC上是否存在一點P,使得2AE2ACAP?若存在,請說明點P的位置,并予以證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C,D是半圓O上的三等分點,直徑AB=4,連接AD,AC,作DEAB,垂足為E,DEAC于點F.

(1)求證:AF=DF.

(2)求陰影部分的面積(結(jié)果保留π和根號)

查看答案和解析>>

同步練習冊答案