D
分析:由△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,根據(jù)全等三角形的性質(zhì),即可求得BC=DE,∠BAC=∠DAE,繼而可得∠1=∠2,則可判定①②正確;由△ABC≌△ADE,可得AB=AD,AC=AE,則可得AB:AC=AD:AE,根據(jù)有兩邊對應成比例且夾角相等三角形相似,即可判定③正確;易證得△AEF∽△OCF與△AOF∽△CEF,繼而可得∠OAC+∠OCE=180°,即可判定A、O、C、E四點在同一個圓上.
解答:
解:∵△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,
∴∠BAC=∠DAE,BC=DE,故②正確;
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠1=∠2,故①正確;
∵△ABC≌△ADE,
∴AB=AD,AC=AE,
∴
,
∵∠1=∠2,
∴△ABD∽△ACE,故③正確;
∵∠ACB=∠AEF,∠AFE=∠OFC,
∴△AFE∽△OFC,
∴
,∠2=∠FOC,
即
,
∵∠AFO=∠EFC,
∴△AFO∽△EFC,
∴∠FAO=∠FEC,
∴∠EAO+∠ECO=∠2+∠FAO+∠ECO=∠FOC+∠FEC+∠ECO=180°,
∴A、O、C、E四點在同一個圓上,故④正確.
故選D.
點評:此題考查了相似三角形的判定與性質(zhì)、全等三角形的性質(zhì)以及四點共圓的知識.此題難度較大,注意數(shù)形結(jié)合思想的應用,注意找到相似三角形是解此題的關(guān)鍵.