【題目】某農科所在相同條件下做某作物種子發(fā)芽率的實驗,結果如下表所示:
種子個數 | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
發(fā)芽種子個數 | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
發(fā)芽種子率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四個推斷:
①種子個數是700時,發(fā)芽種子的個數是624,所以種子發(fā)芽的概率是0.891;
②隨著參加實驗的種子數量的增加,發(fā)芽種子的頻率在0.9附近擺動,顯示出一定的穩(wěn)定性,可以估計種子發(fā)芽的概率約為0.9(精確到0.1);
③實驗的種子個數最多的那次實驗得到的發(fā)芽種子的頻率一定是種子發(fā)芽的概率;
④若用頻率估計種子發(fā)芽的概率約為0.9,則可以估計種子中大約有的種子不能發(fā)芽.
其中合理的是______.
科目:初中數學 來源: 題型:
【題目】在一個不透明的口袋里有標號為的五個小球,除數字不同外,小球沒有任何區(qū)別,摸球前先攪拌均勻,每次摸一個球.
(1)下列說法:
①摸一次,摸出一號球和摸出號球的概率相同;
②有放回的連續(xù)摸次,則一定摸出號球兩次;
③有放回的連續(xù)摸次,則摸出四個球標號數字之和可能是.
其中正確的序號是
(2)若從袋中不放回地摸兩次,求兩球標號數字是一奇一偶的概率,(用列表法或樹狀圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,G是BC中點,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延長線上一點。
(1)求證:△ABF≌△DAE
(2)尺規(guī)作圖:作∠DCM的平分線,交GN于點H(保留作圖痕跡,不寫作法和證明),試證明GH=AG。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,,是線段延長線上一點,連接,過點作于.
(1)求證:.
(2)將射線繞點順時針旋轉后,所得的射線與線段的延長線交于點,連接.
①依題意補全圖形;
②用等式表示線段,,之間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側面示意圖為圖2;使用時為了散熱,在底板下面墊入散熱架O′AC后,電腦轉到AO′B′的位置(如圖3),側面示意圖為圖4,已知OA=0B=20cm,B′O′⊥OA,垂足為C.
(1)求點O′的高度O′C;(精確到0.1cm)
(2)顯示屏的頂部B′比原來升高了多少?(精確到0.1cm)
(3)如圖4,要使顯示屏O′B′與原來的位置OB平行,顯示屏O′B′應繞點O′按順時針方向旋轉多少度?
參考數據:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線的對稱軸為直線,該拋物線與軸的兩個交點分別為和,與軸的交點為,其中.
(1)寫出點的坐標________;
(2)若拋物線上存在一點,使得的面積是的面積的倍,求點的坐標;
(3)點是線段上一點,過點作軸的垂線交拋物線于點,求線段長度的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M
(1)如圖1,當α=90°時,∠AMD的度數為 °
(2)如圖2,當α=60°時,∠AMD的度數為 °
(3)如圖3,當△OCD繞O點任意旋轉時,∠AMD與α是否存在著確定的數量關系?如果存在,請你用表示∠AMD,并圖3進行證明;若不確定,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com