【題目】為培養(yǎng)學(xué)生良好學(xué)習(xí)習(xí)慣,某學(xué)校計劃舉行一次“整理錯題集”的展示活動,對該校部分學(xué)生“整理錯題集”的情況進行了一次抽樣調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.請根據(jù)圖表中提供的信息,解答下列問題:

整理情況

頻數(shù)

頻率

非常好

0.21

較好

70

一般

不好

36


(1)本次抽樣共調(diào)查了多少學(xué)生?
(2)補全統(tǒng)計表中所缺的數(shù)據(jù).
(3)該校有1500名學(xué)生,估計該校學(xué)生整理錯題集情況“非常好”和“較好”的學(xué)生一共約多少名?
(4)某學(xué)習(xí)小組4名學(xué)生的錯題集中,有2本“非常好”(記為A1、A2),1本“較好”(記為B),1本“一般”(記為C),這些錯題集封面無姓名,而且形狀、大小、顏色等外表特征完全相同,從中抽取一本,不放回,從余下的3本錯題集中再抽取一本,請用“列表法”或“畫樹形圖”的方法求出兩次抽到的錯題集都是“非常好”的概率.

【答案】
(1)解:較好的所占的比例是:

則本次抽樣共調(diào)查的人數(shù)是:70÷ =200(人)


(2)解:

非常好的頻數(shù)是:200×0.21=42(人),

一般的頻數(shù)是:200﹣42﹣70﹣36=52(人),

較好的頻率是: =0.35,

一般的頻率是: =0.26,

不好的頻率是: =0.18


(3)解:該校學(xué)生整理錯題集情況“非常好”和“較好”的學(xué)生一共約有1500×(0.21+0.35)=840(人)
(4)解:

則兩次抽到的錯題集都是“非常好”的概率是: =


【解析】(1)根據(jù)較好的部分對應(yīng)的圓心角即可求得對應(yīng)的百分比,即可求得總數(shù),然后根據(jù)頻率= 即可求解;(2)根據(jù)頻率= 即可求解;(3)利用總?cè)藬?shù)乘以對應(yīng)的頻率即可;(4)利用樹形圖方法,利用概率公式即可求解.
【考點精析】認(rèn)真審題,首先需要了解扇形統(tǒng)計圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況),還要掌握列表法與樹狀圖法(當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標(biāo)有2,3,5三個數(shù)字.
(1)從這個袋子中任意摸一只球,所標(biāo)數(shù)字是奇數(shù)的概率是;
(2)從這個袋子中任意摸一只球,記下所標(biāo)數(shù)字,不放回,再從從這個袋子中任意摸一只球,記下所標(biāo)數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個位數(shù)字,組成一個兩位數(shù).求所組成的兩位數(shù)是5的倍數(shù)的概率.(請用“畫樹狀圖”或“列表”的方法寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)碟形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的劇烈為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為;拋物線y= x2對應(yīng)的碟寬為;拋物線y=ax2(a>0)對應(yīng)的碟寬為;拋物線y=a(x﹣3)2+2(a>0)對應(yīng)的碟寬為
(2)利用圖(1)中的結(jié)論:拋物線y=ax2﹣4ax﹣ (a>0)對應(yīng)的碟寬為6,求拋物線的解析式.
(3)將拋物線yn=anx2+bnx+cn(an>0)的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3,…),定義F1 , F2 , …..Fn為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn1的相似比為 ,且Fn的碟頂是Fn1的碟寬的中點,現(xiàn)在將(2)中求得的拋物線記為y1 , 其對應(yīng)的準(zhǔn)蝶形記為F1
①求拋物線y2的表達式;
②若F1的碟高為h1 , F2的碟高為h2 , …Fn的碟高為hn . 則hn= , Fn的碟寬右端點橫坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,動點P從點A出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c交x軸于A(﹣1,0)、B兩點,交y軸于點C(0,5),且過點D(1,8),M為其頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積;
(3)在拋物線上是否存在點P,使△PAB的面積等于△MCB的面積?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(﹣4,0)、B(2,0)兩點,與y軸交于點C,連接AC,BC.

(1)求該拋物線的解析式;
(2)若點P是x軸上的一動點,且位于AB之間,過點P作PE∥AC,交BC于E,連接CP,設(shè)P點橫坐標(biāo)為x,△PCE的面積為S,請求出S關(guān)于x的解析式,并求△PCE面積的最大值;
(3)點為D(﹣2,0),若點M是線段AC上一動點,是否存在M點,能使△OMD是等腰三角形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

(1)【發(fā)現(xiàn)證明】
小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖1證明上述結(jié)論.
(2)【類比引申】
如圖2,四邊形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足什么關(guān)系時,仍有EF=BE+FD
(3)【探究應(yīng)用】如圖3,在某公園的同一水平面上,四條通道圍成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40( ,米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于點O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F(xiàn),連接EF與AC相交于點G. ①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉(zhuǎn)過程中,當(dāng)點E為邊BC的四等分點時(BE>CE),求CG的長.

查看答案和解析>>

同步練習(xí)冊答案