【題目】在△ABC中,AB=AC,以BC為邊作等邊△BDC,連接AD.
(1)如圖1,直接寫出∠ADB的度數(shù) ;
(2)如圖2,作∠ABM=60°在BM上截取BE,使BE=BA,連接CE,判斷CE與AD的數(shù)量關(guān)系,請(qǐng)補(bǔ)全圖形,并加以證明;
(3)在(2)的條件下,連接DE,AE.若∠DEC=60°,DE=2,求AE的長.
【答案】(1)150°;(2)CE=AD,證明詳見解析;(3)AE= .
【解析】
(1)只要根據(jù)已知條件易證△ADB≌△ADC,由全等三角形的性質(zhì)可得∠ADB=∠ADC,根據(jù)周角的定義即可求得∠ADB的度數(shù);(2)結(jié)論為CE=AD,證明△ABD≌△EBC,根據(jù)全等三角形的性質(zhì)即可證得結(jié)論;(3)證明△BDE是直角三角形,△ABE是等邊三角形即可解決問題;
解:(1)如圖1中,
∵△BDC是等邊三角形,
∴BD=DC,∠BDC=60°,
在△ADB和△ADC中,
,
∴△ADB≌△ADC,
∴∠ADB=∠ADC,
∵∠ADB+∠ADC=360°﹣60°,
∴∠ADB=150°,
故答案為150°.
(2)結(jié)論:CE=AD.
理由:∵∠ABE=∠DBC=60°
∴∠ABE﹣∠DBM=∠DBC﹣∠DBM
∴∠1=∠2,
∵AB=BE,BD=DC
∴△ABD≌△EBC
∴CE=AD.
(3)解:
∵△ABD≌△EBC
∴∠BCE=∠BDA=150°
∵∠DCE=90°,∠DEC=60°
∴∠CDE=30°
∵DE=2
∴CE=1,DC=BC=,
∵∠BDE=60°+30°=90°
DE=2,BD=
由勾股BE=,
∵∠ABE=60°AB=BE
∴△ABE是等邊三角形
∴AE=BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人先后從公園大門出發(fā),沿綠道向碼頭步行,乙先到碼頭并在原地等甲到達(dá).圖1是他們行走的路程y(m)與甲出發(fā)的時(shí)間x(min)之間的函數(shù)圖象.
(1)求線段AC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)寫出點(diǎn)B的坐標(biāo)和它的實(shí)際意義;
(3)設(shè)d(m)表示甲、乙之間的距離,在圖2中畫出d與x之間的函數(shù)圖象(標(biāo)注必要數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,小麗用尺規(guī)這樣作圖:(1),以點(diǎn)O為圓心,任意長為半徑作弧,交OA,OB于D,E兩點(diǎn);(2)分別以點(diǎn)D,E為圓心,大于 DE的長為半徑作弧,兩弧交于點(diǎn)C;第三部,作射線OC并連接CD,CE,下列結(jié)論不正確的是( )
A.∠1=∠2
B.S△OCE=S△OCD
C.OD=CD
D.OC垂直平分DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
數(shù)學(xué)活動(dòng)課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點(diǎn)P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點(diǎn)Q.”
小艾的作法如下:
(1)在直線l上任取點(diǎn)A,以A為圓心,AP長為半徑畫。
(2)在直線l上任取點(diǎn)B,以B為圓心,BP長為半徑畫弧.
(3)兩弧分別交于點(diǎn)P和點(diǎn)M
(4)連接PM,與直線l交于點(diǎn)Q,直線PQ即為所求.
老師表揚(yáng)了小艾的作法是對(duì)的.
請(qǐng)回答:小艾這樣作圖的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著幾何部分的學(xué)習(xí),小鵬對(duì)幾何產(chǎn)生了濃厚的興趣,他最喜歡利用手中的工具畫圖了如圖,作一個(gè),以O為圓心任意長為半徑畫弧分別交OA,OB于點(diǎn)C和點(diǎn)D,將一副三角板如圖所示擺放,兩個(gè)直角三角板的直角頂點(diǎn)分別落在點(diǎn)C和點(diǎn)D,直角邊中分別有一邊與角的兩邊重合,另兩條直角邊相交于點(diǎn)P,連接小鵬通過觀察和推理,得出結(jié)論:OP平分.
你同意小鵬的觀點(diǎn)嗎?如果你同意小鵬的觀點(diǎn),試結(jié)合題意寫出已知和求證,并證明.
已知:中,____________,____________,____________.
求證:OP平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣8與x軸交于兩點(diǎn)A,B,與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個(gè)交點(diǎn)為點(diǎn)D,與拋物線的對(duì)稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(﹣2,0),(6,﹣8).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)E的坐標(biāo);
(3)試探究在x軸下方的拋物線上是否存在點(diǎn)F,使得△FOB和△EOB的面積相等,若存在,請(qǐng)求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由;
(4)若點(diǎn)P是y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q,請(qǐng)直接寫出:當(dāng)m為何值時(shí),△OPQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面的例題:
例題:已知二次三項(xiàng)式x2-4x+m有一個(gè)因式是x+3,求另一個(gè)因式以及m的值.
解:設(shè)另一個(gè)因式為x+n,則
x2-4x+m=(x+3)(x+n),
∴x2-4x+m=x2+(n+3)x+3n,
∴,解得,
∴另一個(gè)因式為x-7,m的值為-21.
問題:仿照以上方法解答下面的問題:
已知二次三項(xiàng)式2x2+3x-k有一個(gè)因式是2x-5,求另一個(gè)因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)包裝紙盒的三視圖(單位:cm)
(1)該包裝紙盒的幾何形狀是什么?
(2)畫出該紙盒的平面展開圖.
(3)計(jì)算制作一個(gè)紙盒所需紙板的面積.(精確到個(gè)位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,在A,B兩地間有一車站C,一輛汽車從A地出發(fā)經(jīng)C站勻速駛往B地.如圖(2)是汽車行駛時(shí)離C站的路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系的圖象.
(1)a等于多少km,AB兩地的距離為多少km;
(2)求線段PM、MN所表示的y與x之間的函數(shù)表達(dá)式;
(3)求行駛時(shí)間x在什么范圍時(shí),小汽車離車站C的路程不超過60千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com