【題目】在一次課外實(shí)踐活動中,同學(xué)們要測量某公園人工湖兩側(cè)A,B兩個涼亭之間的距離.選涼亭A,C作為觀測點(diǎn).如圖,現(xiàn)測得∠CAB=45°,∠ACB=98°,AC=200米,請計(jì)算A,B兩個涼亭之間的距離、(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.414,≈1.732,sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)
【答案】A,B兩個涼亭之間的距離約為330米
【解析】
如下圖,過點(diǎn)C作CH⊥BC交AB于點(diǎn)H,先在Rt△ACH中,求得AH的長,然后再Rt△BCH中,求得BH的長,從而得出AB的長.
解:過點(diǎn)C作CH⊥BC交AB于點(diǎn)H,
∵∠B=180°-∠CAB - ∠ACB=180°- 45°-98°=37°,
在Rt△ACH中,∠CAB=45°,AC=200米
∴CH=ACsin∠CAB=200×=100,
AH=ACcos∠CAB=200×=100
在Rt△BCH中,∠B=37°,CH=100米
tan∠B=
BH==
∴AB=AH+BH=≈330
答:A,B兩個涼亭之間的距離約為330米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)按如圖所示的規(guī)律排列下去,若有序數(shù)對(n,m)表示第n排,從左到右第m個數(shù),如(4,3)表示8,已知1+2+3+…+n=,則表示2020的有序數(shù)對是( ).
A.(64,4)B.(65,4)C.(64,61)D.(65,61)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=15,BC=17,將矩形ABCD繞點(diǎn)D按順時針方向旋轉(zhuǎn)得到矩形DEFG,點(diǎn)A落在矩形ABCD的邊BC上,連接CG,則CG的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,B(5,0),點(diǎn)A在第一象限,且OA=OB,sin∠AOB=.
(1)求過點(diǎn)O,A,B三點(diǎn)的拋物線的解析式.
(2)若y=的圖象過(1)中的拋物線的頂點(diǎn),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角尺按如圖的位置擺放(頂點(diǎn)C 與F 重合,邊CA與邊FE疊合,頂點(diǎn)B、C、D在一條直線上).將三角尺ABC繞著點(diǎn)C按逆時針方向旋轉(zhuǎn)n°后(0<n<360 ),若ED⊥AB,則n的值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角尺按如圖的位置擺放(頂點(diǎn)C 與F 重合,邊CA與邊FE疊合,頂點(diǎn)B、C、D在一條直線上).將三角尺ABC繞著點(diǎn)C按逆時針方向旋轉(zhuǎn)n°后(0<n<360 ),若ED⊥AB,則n的值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為正方形,為對角線上的動點(diǎn),過點(diǎn)作,交射線于,交射線于.
(1)求證;;
(2)求證;;
(3)若,當(dāng)時,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知經(jīng)過點(diǎn)A(﹣3,0)的拋物線y=ax2+2ax﹣3與y軸交于點(diǎn)C,點(diǎn)B與點(diǎn)A關(guān)于該拋物線的對稱軸對稱,D為該拋物線的頂點(diǎn).
(1)直接寫出該拋物線的對稱軸以及點(diǎn)B的坐標(biāo)、點(diǎn)C的坐標(biāo)、點(diǎn)D的坐標(biāo);
(2)聯(lián)結(jié)AD、DC、CB,求四邊形ABCD的面積;
(3)聯(lián)結(jié)AC.如果點(diǎn)E在該拋物線上,過點(diǎn)E作x軸的垂線,垂足為H,線段EH交線段AC于點(diǎn)F.當(dāng)EF=2FH時,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.點(diǎn)D在邊AB上(不與點(diǎn)A、B重合),以AD為半徑的⊙A與射線AC相交于點(diǎn)E,射線DE與射線BC相交于點(diǎn)F,射線AF與⊙A交于點(diǎn)G.
(1)如圖,設(shè)AD=x,用x的代數(shù)式表示DE的長;
(2)如果點(diǎn)E是的中點(diǎn),求∠DFA的余切值;
(3)如果△AFD為直角三角形,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com