【題目】如圖,在△ABC中,ABAC,以AB為直徑作⊙O,分別交AC、BC于點(diǎn)D、E,點(diǎn)FAC的延長(zhǎng)線上,且∠A2CBF

(1)求證:BF與⊙O相切.

(2)BCCF4,求BF的長(zhǎng)度.

【答案】(1)證明見(jiàn)解析;(2)BF=4.

【解析】

(1)連接AE,根據(jù)三角形的性質(zhì)求出∠AEB=90°,根據(jù)切線的判定定理證明即可;
(2)結(jié)合圖形根據(jù)直角三角形的性質(zhì)求出BF.

(1)連接AE,如圖,

∵AB為直徑,

∴∠AEB=90°,

∴AE⊥BC,

∵AB=AC,

∴BE=CE,AE平分∠BAC,

∴∠1=∠2,

∵∠BAC=2∠4,

∴∠1=∠4,

∵∠1+∠3=90°,

∴∠3+∠4=90°,

∴AB⊥BF,

∴BF與⊙O相切;

(2)∵BC=CF=4,

∴∠F=∠4,

而∠BAC=2∠4,

∴∠BAC=2∠F,

∴∠F=30°,∠BAC=60°,

∴△ABC為等邊三角形,

∴AB=AC=4,

∴BF===4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點(diǎn)E,F(xiàn)AB的中點(diǎn),聯(lián)結(jié)AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次促銷活動(dòng)中,某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如圖,轉(zhuǎn)盤(pán)被平均分成份),并規(guī)定:顧客每購(gòu)買元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤(pán),那么可以直接獲得購(gòu)物券元.

(1)求每轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)所獲購(gòu)物券金額的平均數(shù);

(2)如果你在該商場(chǎng)消費(fèi)元,你會(huì)選擇轉(zhuǎn)轉(zhuǎn)盤(pán)還是直接獲得購(gòu)物券?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示

1)請(qǐng)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△ABC;(其中AB、C分別是AB、C的對(duì)應(yīng)點(diǎn),不寫(xiě)畫(huà)法)

2)直接寫(xiě)出ABC三點(diǎn)的坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊ABC的邊長(zhǎng)為4cm,點(diǎn)P,Q分別是直線ABBC上的動(dòng)點(diǎn).

1)如圖1,當(dāng)點(diǎn)P從頂點(diǎn)A沿ABB點(diǎn)運(yùn)動(dòng),點(diǎn)Q同時(shí)從頂點(diǎn)B沿BCC點(diǎn)運(yùn)動(dòng),它們的速度都為lcm/s,到達(dá)終點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒,連接AQPQ

①當(dāng)t2時(shí),求∠AQP的度數(shù).

②當(dāng)t為何值時(shí)PBQ是直角三角形?

2)如圖2,當(dāng)點(diǎn)PBA的延長(zhǎng)線上,QBC上,若PQPC,請(qǐng)判斷AP,CQAC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我區(qū)某中學(xué)開(kāi)展社會(huì)主義核心價(jià)值觀演講比賽活動(dòng),九(1)、九(2)班根據(jù)初賽成績(jī)各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)(滿分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問(wèn)題:

(1)九(1)班復(fù)賽成績(jī)的中位數(shù)是   分,九(2)班復(fù)賽成績(jī)的眾數(shù)是   分;

(2)小明同學(xué)已經(jīng)算出了九(1)班復(fù)賽的平均成績(jī) =85分;方差S2= [(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),請(qǐng)你求出九(2)班復(fù)賽的平均成績(jī)x2和方差S22

(3)根據(jù)(2)中計(jì)算結(jié)果,分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙,丙三種作物,分別在山腳,山腰和山頂三個(gè)試驗(yàn)田進(jìn)行試驗(yàn),每個(gè)試驗(yàn)田播種二十粒種子,農(nóng)業(yè)專家將每個(gè)試驗(yàn)田成活的種子個(gè)數(shù)統(tǒng)計(jì)如條形統(tǒng)計(jì)圖,如圖所示,下面有四個(gè)推斷:

①甲種作物受環(huán)境影響最小;②乙種作物平均成活率最高;

③丙種作物最適合播種在山腰;

④如果每種作物只能在一個(gè)地方播種,那么山腳,山腰和山頂分別播種甲,乙,丙三種作物能使得成活率最高.其中合理的是( 。

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F

1)求證:CF是⊙O的切線;

2)若∠F=30°EB=6,求圖中陰影部分的面積(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角ABC中,AD是高,E,F分別是AB,AC中點(diǎn),EFADG,已知GF=1,AC= 6,DEG的周長(zhǎng)為10,則ABC的周長(zhǎng)為(

A. 27-3B. 28-3C. 28-4D. 29-5

查看答案和解析>>

同步練習(xí)冊(cè)答案