【題目】為了樹立文明鄉(xiāng)風,推進社會主義新農(nóng)村建設(shè),某村決定組建村民文體團隊,現(xiàn)圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內(nèi)隨機抽取部村民進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:

(1)請將條形統(tǒng)計圖補充完整;

(2)求扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù);

(3)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節(jié)慶典活動,請用列表法或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.

【答案】1)見解析;(2)“劃龍舟”所在扇形的圓心角的度數(shù)為:90°;(3)兩個項目的概率是.

【解析】

(1)直接利用腰鼓所占比例以及條形圖中人數(shù)即可得出這次參與調(diào)查的村民人數(shù),利用條形統(tǒng)計圖以及樣本數(shù)量得出喜歡廣場舞的人數(shù),補齊條形統(tǒng)計圖即可;

2)利用“劃龍舟”人數(shù)在樣本中所占比例得出“劃龍舟”所在扇形的圓心角的度數(shù);

(3)利用樹狀圖法列舉出所有的可能進而得出概率.

(1)這次參與調(diào)查的村民人數(shù)為:24÷20%=120(人),

喜歡廣場舞的人數(shù)為:120-24-15-30-9=42(人),

如圖所示:

(2)扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù)為:

×360°=90°; ………………

(3)如圖所示:

一共有12種可能,恰好選中“花鼓戲、劃龍舟”這兩個項目的有2種可能,故恰好選中“花鼓戲、劃龍舟”這兩個項目的概率是=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標;

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖,請求出M點的坐標和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AEBF交于點G.下列結(jié)論錯誤的是( 。

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y軸交于B,與x軸交于點D、A,點A在點D的右邊,頂點為F,

1)直接寫出點B、A、F的坐標;

2)設(shè)Q在該拋物線上,且,求點Q的坐標;

3)對大于1常數(shù)m,在x軸上是否存在點M,使得?若存在,求出點M坐標;若不存在,說明理由?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-x+b與雙曲線分別相交于點A,B,CD,已知點A的坐標為(-1,4),且ABCD=52,則m=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我省南部的南宮山景區(qū),為吸引游客組團來此旅游特推出了如下門票收費標準:

標準一:如果人數(shù)不超過20人,門票價格70/

標準二:如果人數(shù)超過20人,每超過1人,門票價格降低2元,但門票價格不低于55/

1)若某單位組織22名員工去南宮山景區(qū)旅游,則購買門票共需多少元?

2)若某單位共支付南宮山景區(qū)門票費用1500元,試求該單位這次共有多少名員工去南宮山旅游.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,點C在優(yōu)弧上,將弧沿折疊后剛好經(jīng)過AB的中點D,若⊙O的半徑為,AB4,則BC的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,晚上,小亮在廣場上乘涼.圖中線段AB表示站在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈.

(1)請你在圖中畫出小亮在照明燈(P)照射下的影子;

(2)如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m,請求出小亮影子的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt中,∠A=90°,AC=4,,將沿著斜邊BC翻折,點A落在點處,點D、E分別為邊ACBC的中點,聯(lián)結(jié)DE并延長交所在直線于點F,聯(lián)結(jié),如果為直角三角形時,那么____________

查看答案和解析>>

同步練習冊答案