【題目】沾益區(qū)興隆水果店計(jì)劃用1000元購進(jìn)甲、乙兩種新出產(chǎn)的水果140千克,這兩種水果的進(jìn)價(jià)、售價(jià)如下表所示:
進(jìn)價(jià)(元/千克) | 售價(jià)(元/千克) | |
甲 | 5 | 8 |
乙 | 9 | 13 |
(1)這兩種水果各購進(jìn)多少千克?
(2)該水果店全部銷售完這批水果時(shí)獲利多少元?
【答案】(1)購進(jìn)甲種水果65千克,乙種水果75千克;(2)可獲利495元.
【解析】試題分析:(1)設(shè)購進(jìn)甲種水果千克,則購進(jìn)乙種水果千克,根據(jù)表格中的數(shù)據(jù)和意義列出方程并解答;
(2)總利潤=甲的利潤+乙的利潤.
試題解析:(1)設(shè)購進(jìn)甲種水果千克,則購進(jìn)乙種水果千克,根據(jù)題意可得:
解得:
∴(千克),
答:購進(jìn)甲種水果65千克,乙種水果75千克;
該水果店全部銷售完這批水果時(shí)獲得的利潤是:元.
答:該水果店全部銷售完這批水果時(shí)獲得的利潤是495元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠按用戶的月需求量x(件)完成一種產(chǎn)品的生產(chǎn),其中x>0.每件的售價(jià)為18萬元,每件的成本y(萬元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量x(件)成反比.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),月需求量x與月份n(n為整數(shù),1≤n≤12)符合關(guān)系式x=2n2﹣2kn+9(k+3)(k為常數(shù)),且得到了表中的數(shù)據(jù)
月份n(月)1 | 1 | 2 |
成本y(萬元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)直接寫出k的值;
(2)求y與x滿足的關(guān)系式,請(qǐng)說明一件產(chǎn)品的利潤能否是12萬元;
(3)推斷是否存在某個(gè)月既無盈利也不虧損.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個(gè)數(shù)(從左往右數(shù)),如A7=(2,3),則A2019=( )
A.(31,47)B.(31,48)C.(32,48)D.(32,49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC 放在平面直角坐標(biāo)系中, O(0,0) , A(6,0) , C(0,3) .動(dòng)點(diǎn)Q 從點(diǎn)O 出發(fā)以每秒 1 個(gè)單位長的速度沿OC 向終點(diǎn)C 運(yùn)動(dòng),運(yùn)動(dòng)秒時(shí),動(dòng)點(diǎn) P 從點(diǎn)A 出發(fā)以相等的速度沿 AO 向終點(diǎn)O 運(yùn)動(dòng)。當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。設(shè)點(diǎn) P 的運(yùn)動(dòng)時(shí)間為t (秒).
(1)用含t 的代數(shù)式表示OP,OQ ;
(2)當(dāng)t 1時(shí),如圖 1,將△OPQ 沿 PQ 翻折,點(diǎn)O 恰好落在CB 邊上的點(diǎn) D 處,求點(diǎn) D 的坐標(biāo);
(3)連結(jié) AC ,將△OPQ 沿 PQ 翻折,得到△EPQ ,如圖 2.問: PQ 與 AC 能否平行? PE 與 AC 能否垂直?若能,求出相應(yīng)的t 值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=30°,點(diǎn)D在△ABC外,且BD=2.連AD、CD,則△ACD的周長最小值為( 。
A. 1B. C. 2D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的邊AB上,連接DE,過點(diǎn)C作CF⊥DE于F,過點(diǎn)A作AG∥CF交DE于點(diǎn)G.
(1)求證:△DCF≌△ADG.
(2)若點(diǎn)E是AB的中點(diǎn),設(shè)∠DCF=α,求sinα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)﹣3,B點(diǎn)表示數(shù)9,若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以3個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),則經(jīng)過 秒,甲球到原點(diǎn)的距離等于乙球到原點(diǎn)的距離的兩倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOD=∠COB=90°,∠COE=25°,EO是∠BOD的角平分線;
(1)找出圖中除直角外的兩對(duì)相等的角:
(2)求∠COD的度數(shù),按要求填空:
因?yàn)椤?/span>COB=90°,∠COE=25°,
所以∠BOE=∠ -∠ =90°- °= °.
因?yàn)?/span>EO是∠BOD的角平分線,
所以∠ =∠BOE= °
所以∠COD=∠ -∠ = °- °= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.某酒廠生產(chǎn)A,B兩種品牌的酒,平均每天兩種酒共可售出600瓶,每種酒每瓶的成本和售價(jià)如表所示,設(shè)平均每天共獲利y元,平均每天售出A種品牌的酒x瓶.
A | B | |
成本(元) | 50 | 35 |
售價(jià)(元) | 70 | 50 |
(1)請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)如果該廠每天至少投入成本25000元,且售出的B種品牌的酒不少于全天銷售總量的55%,那么共有幾種銷售方案?并求出每天至少獲利多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com