30、數(shù)5的絕對值是5,是它的本身;數(shù)-5的絕對值是5,是它的相反數(shù);以上由定理非負數(shù)的絕對值等于它本身,非正數(shù)的絕對值等于它的相反數(shù)而來.由這句話,正數(shù)-a的絕對值為
-a
;負數(shù)-b的絕對值為
b
;負數(shù)1+a的絕對值為
-1-a
,正數(shù)-a+1的絕對值
-a+1
分析:根據(jù)負數(shù)的絕對值等于它的相反數(shù);零的絕對值等于0;正數(shù)的絕對值是它本身,即可得出答案.
解答:解:負數(shù)的絕對值等于它的相反數(shù);零的絕對值等于0;正數(shù)的絕對值是它本身.
∴由這句話,正數(shù)-a的絕對值為-a;負數(shù)-b的絕對值為b;負數(shù)1+a的絕對值為-1-a,正數(shù)-a+1的絕對值-a+1.
故答案為:-a;b;-1-a;-a+1.
點評:本題考查了絕對值的知識,屬于基礎(chǔ)題,注意對絕對值性質(zhì)的熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;

 這個結(jié)論可以推廣為表示在數(shù)軸上對應點之間的距離;

例1:解方程,容易看出,在數(shù)軸下與原點距離為2點的對應數(shù)為±2,即該方程的解為x=±2

例2:解不等式▏x-1▏>2,如圖,在數(shù)軸上找出▏x-1▏=2的解,即到1的距離為2的點對應的數(shù)為-1、3,則▏x-1▏>2的解為x<-1或x>3

例3:解方程。由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1

和-2的距離之和為5的點對應的x的值。在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊,若x對應點在1的右邊,由圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3

參考閱讀材料,解答下列問題:

(1)方程的解為                     

(2)解不等式≥9;

(3)若≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年廣東省珠海市文園中學中考數(shù)學三模試卷(解析版) 題型:解答題

閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;

這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應點之間的距離;
在解題中,我們會常常運用絕對值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊.若x對應點在1的右邊,如圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年安徽省滁州市鳳陽縣城西中學中考數(shù)學模擬試卷(解析版) 題型:解答題

閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;

這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應點之間的距離;
在解題中,我們會常常運用絕對值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊.若x對應點在1的右邊,如圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一元一次方程》(01)(解析版) 題型:解答題

(2008•樂山)閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;

這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應點之間的距離;
在解題中,我們會常常運用絕對值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊.若x對應點在1的右邊,如圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案