【題目】如圖,正比例函數(shù) 的圖象與反比例函數(shù) 在第一象限的圖象交于 點,過 點作 軸的垂線,垂足為 ,已知 的面積為1.

(1)求反比例函數(shù)的解析式;
(2)如果 為反比例函數(shù)在第一象限圖象上的點(點 與點 不重合),且 點的橫坐標為1,在 軸上求一點 ,使 最小.

【答案】
(1)解:設(shè) 點的坐標為( , ),則 .∴ .
,∴ .∴ .∴反比例函數(shù)的解析式為
(2)解:由 為( , ).
設(shè) 點關(guān)于 軸的對稱點為 ,則 點的坐標為( , ).
令直線 的解析式為 .∵ 為( , )∴
的解析式為 ,當 時, .∴ 點為( ,
【解析】(1)利用k的幾何意義,,可求出k;(2)運用對稱法,即作出A(或B)關(guān)于x軸的對稱點A',連接A'B,交x軸于P,此時 P A + P B 最小

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,A10)、點By軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(ab),且a3

1)直接寫出點C的坐標   

2)直接寫出點E的坐標   ;

3)點PCE上一動點,設(shè)∠CBPx°,∠PADy°,∠BPAz°,確定x,y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑為10,在⊙O上位于直徑AB的異側(cè)有定點C和動點P,已知BC:CA=4:3,點P在半圓弧AB上運動(不與A、B兩點重合),過點C作CP的垂線CD交PB的延長線于D點.

(1)求證:ACCD=PCBC;
(2)當點P運動到AB弧中點時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點MAB的中點,點PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MDME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學初一年級有350名同學去春游,已知2A型車和1B型車可以載學生100人;1A型車和2B型車可以載學生110人.(1A、B型車每輛可分別載學生多少人?(2)若租一輛A型車需要1000元,一輛B型車需1200元,請你設(shè)計租車方案,使得恰好運送完學生并且租車費用最少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形,若學校位置坐標為A1,2),解答以下問題:

1)請在圖中建立適當?shù)闹苯亲鴺讼,并寫出圖書館B位置的坐標;

2)若體育館位置坐標為C(-3,3),請在坐標系中標出體育館的位置,并順次連接學校、圖書館、體育館,得到△ABC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市荸薺喜獲豐收,某生產(chǎn)基地收獲荸薺40噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、加工銷售三種銷售方式,這三種銷售方式每噸荸薺的利潤如下表:

銷售方式 批發(fā) 零售 加工銷售

利潤(百元/噸) 12 22 30

設(shè)按計劃全部售出后的總利潤為y百元,其中批發(fā)量為x噸,且加工銷售量為15噸.

1)求yx之間的函數(shù)關(guān)系式;

2)若零售量不超過批發(fā)量的4倍,求該生產(chǎn)基地按計劃全部售完荸薺后獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,AB=CD,點E、FBC上,且BE=CF

1)求證:△ABE≌△DCF

2)試證明:以A、F、D、E為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡或求值

1)若A=-2a2+ab-b3,B=a2-2ab+b3,求A -2B的值。

2)先化簡,再求值:5x2y-3xy2-7x2y- xy),其中x=2,y=-1。

查看答案和解析>>

同步練習冊答案