已知:如圖,點A、B在⊙O上,直線AC是⊙O的切線,連接AB交OC于點D,AC=CD.
(1)求證:OC⊥OB;
(2)如果OD=1,tan∠OCA=數(shù)學公式,求AC的長.

(1)證明:
∵OA=OB,
∴∠B=∠4.
∵CD=AC,
∴∠1=∠2.
∵∠3=∠2,
∴∠3=∠1.
∵AC是⊙O的切線,
∴OA⊥AC,
∴∠OAC=90°,
∴∠1+∠4=90°,
∴∠3+∠B=90°,
∴∠BOD=90°,
∴OC⊥OB,

解:(2)在Rt△OAC中,∠OAC=90°,
∵tan∠OCA=,
,
∴設AC=2x,則AO=x,
由勾股定理得,OC=3x.
∵AC=CD,
∴AC=CD=2x.
∵OD=1,
∴OC=2x+1.
∴2x+1=3x,
∴x=1,
∴AC=2×1=2.
分析:(1)根據(jù)OB=OA求出∠B=∠4,根據(jù)AC=CD得出∠1=∠2=∠3,根據(jù)切線性質求出∠1+∠4=90°=∠B+∠3,QIUC∠BOD度數(shù)即可;
(2)根據(jù)銳角三角函數(shù)得出OA:AC=2:,設AC=2x,則AO=x,由勾股定理求出OC=3x,得出3x=2x+1,求出x即可.
點評:本題考查了勾股定理,切線的性質,等腰三角形的性質,三角形的內(nèi)角和定理等知識點,主要考查學生綜合運用性質進行推理和計算的能力,題目比較好,綜合性比較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、已知:如圖,點O為?ABCD的對角線BD的中點,直線EF經(jīng)過點O,分別交BA、DC的延長線于點E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點A、B分別在x軸、y軸上,以OA為直徑的⊙P交AB于點C(-
2
5
,
4
5
)
,E為直徑精英家教網(wǎng)OA上一動點(與點O、A不重合).EF⊥AB于點F,交y軸于點G.設點E的橫坐標為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,點A、B、C、D在同一條直線上,EA⊥AD,F(xiàn)D⊥AD,AE=DF,AB=DC.BF,CE相交于點O.
(1)求證:∠ACE=∠DBF;
(2)若點B是AC的中點,∠E=60°,AE=4,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點P是半徑為5cm的⊙O外的一點,OP=13cm,PT切⊙O于T,過P點作⊙O的割線PAB,(PB>PA).設PA=x,PB=y,求y關于x的函數(shù)解析式,并確定自變量x的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•淮陰區(qū)模擬)已知:如圖,點E、A、C在同一條直線上,AB=CE,AC=CD,BC=ED.求證:AB∥CD.

查看答案和解析>>

同步練習冊答案