【題目】已知拋物線的頂點在第一象限,過點作軸于點,是線段上一點(不與點、重合),過點作軸于點,并交拋物線于點.
(1)求拋物線頂點的縱坐標隨橫坐標變化的函數(shù)解析式,并直接寫出自變量的取值范圍;
(2)若直線交軸的正半軸于點,且,求的面積的取值范圍.
【答案】(1)函數(shù)解析式為y=x+4(x>0);(2)0≤S≤.
【解析】
(1)拋物線解析式為y=-x2+2mx-m2+m+4,設頂點的坐標為(x,y),利用拋物線頂點坐標公式得到x=m,y=m-4,然后消去m得到y與x的關系式即可.
(2)如圖,根據(jù)已知得出OE=4-2m,E(0,2m-4),設直線AE的解析式為y=kx+2m-4,代入A的坐標根據(jù)待定系數(shù)法求得解析式,然后聯(lián)立方程求得交點P的坐標,根據(jù)三角形面積公式表示出S=(4-2m)(m-2)=-m2+3m-2=-(m-)2+,即可得出S的取值范圍.
(1)由拋物線y=-x2+2mx-m2+m+4可知,a=-1,b=2m,c=-m2+m+4,
設頂點的坐標為(x,y),
∴x=-=m,
∵b=2m,
y==m+4=x+4,
即頂點的縱坐標隨橫坐標變化的函數(shù)解析式為y=x+4(x>0);
(2)如圖,由拋物線y=-x2+2mx-m2+m+4可知頂點A(m,m+4),
∵軸
∴軸
∴△ACP∽△ABE,
∴
∵
∴,
∵AB=m,
∴BE=2m,
∵OB=4+m,
∴OE=4+m-2m=4-m,
∴E(0,4-m),
設直線AE的解析式為y=kx+4-m,
代入A的坐標得,m+4=km+4-m,解得k=2,
∴直線AE的解析式為y=2x+4-m,
解
得,,
∴P(m-2,m),
∴S=(4-m)(m-2)=-m2+3m-2=-(m-3)2+,
∴S有最大值,
∴△OEP的面積S的取值范圍:0≤S≤.
科目:初中數(shù)學 來源: 題型:
【題目】池州十中組織七、八、九年級學生參加“中國夢”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了以下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題:
(1)全校參賽作文篇數(shù)為 篇,補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 ;
(3)經(jīng)過評審,全校共有4篇作文榮獲一等獎,其中一篇來自七年級,兩篇來自八年級,一篇來自九年級,學校準備從一等獎作文中任選兩篇刊登在?,請用樹狀圖方法求出九年級一等獎作文登上?母怕剩
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】截長補短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長就是在長邊上截取一條線段與某一短邊相等,補短就是通過延長或旋轉等方式使兩條短邊拼合到一起,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關系.
解題思路:將△ABD繞點A逆時針旋轉60°得到△ACE,可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根據(jù)∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,則 ∠ACE+∠ACD=180°,易知△ADE是等邊三角形,所以AD=DE,從而解決問題.
根據(jù)上述解題思路,三條線段DA、DB、DC之間的等量關系是___________;
(2)如圖2,Rt△ABC中,∠BAC=90°,AB=AC.點D是邊BC下方一點,∠BDC=90°,探索三條線段DA、DB、DC之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-2x+1
(1)求此函數(shù)圖象的頂點A以及它與y軸交點B的坐標.
(2)求此函數(shù)圖象與x軸的交點C和D的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB經(jīng)過圓心O ,交⊙O于點C.
(1)尺規(guī)作圖:在AB上方的圓弧上找一點D,使得△ABD是以AB為底邊的等腰三角形(保留作圖痕跡);
(2)在(1)的條件下,若∠DAB=30°,求證:直線BD與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學問題:如何計算平面直角坐標系中任意兩點之間的距離?
探究問題:
為解決上面的問題,我們從最簡單的問題進行研究.
探究一:在圖1中,已知線段AB,A(﹣2,0),B(0,3),寫出線段AO的長,BO的長,所以線段AB的長為多少;把Rt△AOB向右平移3個單位,再向上平移2個單位,得到Rt△CDE,寫出Rt△CDE的頂點坐標C,D,E,此時線段CD的長為多少,DE的長為多少,所以線段CE的長為多少.
探究二:在圖2中,已知線段AB的端點坐標為A(a,b),B(c,d),求出圖中AB的長(用含a,b,c,d的代數(shù)式表示,不必證明).
歸納總結:無論線段AB處于直角坐標系中的哪個位置,當其端點坐標為A(x1,y1),B(x2,y2)時線段AB的長為多少(用含x1,y1,x2,y2的代數(shù)式表示,不必證明).
拓展與應用:
運用在圖3中,一次函數(shù)y=﹣x+3與反比例函數(shù)y=的圖象交點為A、B,交點的坐標分別是A(1,2),B(2,1).
①求線段AB的長;
②若點P是x軸上動點,求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,點D,E分別在AB,BC上,將△ABC沿直線DE折疊,點B落在AC的中點B′處,則BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.
(1)求一次函數(shù)的表達式;
(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種產(chǎn)品,其標價比進價每件多元,且商店用元購進這種商品的數(shù)量和這種商品元的銷售額所售出的件數(shù)相同.
求這種商品的進價及標價;
經(jīng)過--段時間的銷售,商店發(fā)現(xiàn),以標價出售這種商品,每天可售出件,每漲價元,則少賣出件,要使這種商品每天的銷售額最大,求該商品每件應漲價多少元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com