【題目】一只不透明的袋子中,裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外其他都相同.

(1)小明認(rèn)為,攪勻后從中任意摸出一個(gè)球,不是白球就是紅球,因此摸出白球和摸出紅球是等可能的.你同意他的說(shuō)法嗎?為什么?

(2)攪勻后從中摸出一個(gè)球,請(qǐng)求出不是白球的概率;

(3)攪勻后從中任意摸出一個(gè)球,要使摸出紅球的概率為,應(yīng)添加幾個(gè)紅球?

【答案】(1)不同意,理由見(jiàn)解析;(2);(3)3.

【解析】試題分析:(1)求出分別摸到白球與摸到紅球的概率,比較這兩個(gè)概率,即可知道誰(shuí)的可能性大,概率大則可能性就大;

2)由(1)即可得出結(jié)論;

3)此題考查了借助方程思想求概率的問(wèn)題,解題的關(guān)鍵是找到等量關(guān)系.

試題解析:解:(1)不同意,因?yàn)閮煞N球數(shù)量不同,裝有2個(gè)白球和1個(gè)紅球,摸出白球的概率為,摸出紅球的概率為,故摸出白球和摸出紅球的可能性不同.

2)由(1)得出不是白球的概率即為摸出紅球的概率為;

3設(shè)應(yīng)添加x個(gè)紅球,所以,解得x=3.故應(yīng)添加3個(gè)紅球.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=∠BAD上述結(jié)論是否仍然成立,并說(shuō)明理由;

(3)如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AC+BC=24,AO,BO分別是角平分線,且MNBA,分別交AC于N,BC于M,則CMN的周長(zhǎng)為(

A.12 B.24 C.36 D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀理解:

如圖,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是 ;

(2)問(wèn)題解決:

如圖,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問(wèn)題拓展:

如圖,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以C為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBDCE均為等腰三角形,點(diǎn)A、DE在同一直線上,連接BF.若∠CABCBACDECED50°.

(1)求證:ADBE

(2)求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果經(jīng)過(guò)三角形某一個(gè)頂點(diǎn)的一條直線可把它分成兩個(gè)小等腰三角形,那么我們稱該三角形為等腰三角形的生成三角形,簡(jiǎn)稱生成三角形.

(1)如圖,已知等腰直角三角形ABC,∠A=90°,試說(shuō)明:△ABC是生成三角形;

(2)若等腰三角形DEF有一個(gè)內(nèi)角等于36°,請(qǐng)你畫出簡(jiǎn)圖說(shuō)明△DEF是生成三角形.(要求畫出直線,標(biāo)注出圖中等腰三角形的頂角、底角的度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列結(jié)論中正確的是(

A.三角形的三個(gè)內(nèi)角中最多有一個(gè)銳角

B.三角形的三條高都在三角形內(nèi)

C.鈍角三角形最多有一個(gè)銳角

D.三角形的三條角平分線都在三角形內(nèi)部

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大連外語(yǔ)學(xué)院98000人極其喜歡數(shù)學(xué),此數(shù)表示為科學(xué)記數(shù)法(

A.0.98×105B.9.8×104C.98×l03D.9.8×l03

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三角形的外心在這個(gè)三角形的一邊上,那么這個(gè)三角形是( )

A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案