如圖,CA,CB分別與⊙O相切于點D,B,圓心O在AB上,AB與⊙O的另一交點為E,AE=2,⊙O的半徑為1,則BC的長為( 。
A.
2
B.2
2
C.
2
2
D.
3

連接OD,
∵AC,BC是圓的切線,
∴∠B=∠ADO=90°,
∵CD=BC,
∴AD=AD=2
2

∵AC2-BC2=AB2,
∴(2
2
+BC)2-BC2=42,
∴BC=
2

故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知A點的坐標為(0,3),⊙A的半徑為1,點B在x軸上.
①若點B的坐標為(4,0),⊙B的半徑為3,試判斷⊙A與⊙B的位置關系;
②能否在x軸的正半軸上確定一點B,使⊙B與y軸相切,并且與⊙A相切?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,設⊙O是△BDE的外接圓.
(1)求證:AC是⊙O的切線;
(2)若DE=2,BD=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知Rt△ABC的斜邊AB=8cm,AC=4cm.
(1)以點C為圓心作圓,當半徑為多長時,直線AB與⊙C相切?為什么?
(2)以點C為圓心,分別以2cm和4cm為半徑作兩個圓,這兩個圓與直線AB分別有怎樣的位置關系?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直線AB、CD、BC分別與⊙O相切于E、F、G,且ABCD,若OB=6cm,0C=8cm,則BE+CG的長等于( 。
A.13B.12C.11D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC和BD是它的兩條切線,CO平分∠ACD.
(1)求證:CD是⊙O的切線;
(2)若AC=2,BD=3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知兩同心圓中,大圓的弦AB,AC切小圓于D,E,△ABC的周長為12cm,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,以AB為直徑的半圓O交AC于點D,且點D為AC的中點,DE⊥BC于點E,AE交半圓O于點F,BF的延長線交DE于點G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=
3
2
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠D=30°.
(l)求證:CD是⊙O的切線;
(2)若CD=3
3
,求扇形0AC的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習冊答案